Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 145(5): 732-44, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21620138

RESUMEN

The pyruvate kinase isoforms PKM1 and PKM2 are alternatively spliced products of the PKM2 gene. PKM2, but not PKM1, alters glucose metabolism in cancer cells and contributes to tumorigenesis by mechanisms that are not explained by its known biochemical activity. We show that PKM2 gene transcription is activated by hypoxia-inducible factor 1 (HIF-1). PKM2 interacts directly with the HIF-1α subunit and promotes transactivation of HIF-1 target genes by enhancing HIF-1 binding and p300 recruitment to hypoxia response elements, whereas PKM1 fails to regulate HIF-1 activity. Interaction of PKM2 with prolyl hydroxylase 3 (PHD3) enhances PKM2 binding to HIF-1α and PKM2 coactivator function. Mass spectrometry and anti-hydroxyproline antibody assays demonstrate PKM2 hydroxylation on proline-403/408. PHD3 knockdown inhibits PKM2 coactivator function, reduces glucose uptake and lactate production, and increases O(2) consumption in cancer cells. Thus, PKM2 participates in a positive feedback loop that promotes HIF-1 transactivation and reprograms glucose metabolism in cancer cells.


Asunto(s)
Hipoxia de la Célula , Dioxigenasas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias/metabolismo , Piruvato Quinasa/metabolismo , Animales , Línea Celular Tumoral , Dioxigenasas/genética , Retroalimentación , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Células HeLa , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Redes y Vías Metabólicas , Ratones , Elementos de Respuesta , Activación Transcripcional , Factores de Transcripción p300-CBP/metabolismo
2.
Hum Mol Genet ; 32(20): 3006-3025, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37535888

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the HD gene, coding for huntingtin protein (HTT). Mechanisms of HD cellular pathogenesis remain undefined and likely involve disruptions in many cellular processes and functions presumably mediated by abnormal protein interactions of mutant HTT. We previously found HTT interaction with several protein arginine methyl-transferase (PRMT) enzymes. Protein arginine methylation mediated by PRMT enzymes is an important post-translational modification with an emerging role in neurodegeneration. We found that normal (but not mutant) HTT can facilitate the activity of PRMTs in vitro and the formation of arginine methylation complexes. These interactions appear to be disrupted in HD neurons. This suggests an additional functional role for HTT/PRMT interactions, not limited to substrate/enzyme relationship, which may result in global changes in arginine protein methylation in HD. Our quantitative analysis of striatal precursor neuron proteome indicated that arginine protein methylation is significantly altered in HD. We identified a cluster highly enriched in RNA-binding proteins with reduced arginine methylation, which is essential to their function in RNA processing and splicing. We found that several of these proteins interact with HTT, and their RNA-binding and localization are affected in HD cells likely due to a compromised arginine methylation and/or abnormal interactions with mutant HTT. These studies reveal a potential new mechanism for disruption of RNA processing in HD, involving a direct interaction of HTT with methyl-transferase enzymes and modulation of their activity and highlighting methylation of arginine as potential new therapeutic target for HD.

3.
J Immunol ; 211(4): 612-625, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37405694

RESUMEN

Dendritic cells bridge the innate and adaptive immune responses by serving as sensors of infection and as the primary APCs responsible for the initiation of the T cell response against invading pathogens. The naive T cell activation requires the following three key signals to be delivered from dendritic cells: engagement of the TCR by peptide Ags bound to MHC molecules (signal 1), engagement of costimulatory molecules on both cell types (signal 2), and expression of polarizing cytokines (signal 3). Initial interactions between Borrelia burgdorferi, the causative agent of Lyme disease, and dendritic cells remain largely unexplored. To address this gap in knowledge, we cultured live B. burgdorferi with monocyte-derived dendritic cells (mo-DCs) from healthy donors to examine the bacterial immunopeptidome associated with HLA-DR. In parallel, we examined changes in the expression of key costimulatory and regulatory molecules as well as profiled the cytokines released by dendritic cells when exposed to live spirochetes. RNA-sequencing studies on B. burgdorferi-pulsed dendritic cells show a unique gene expression signature associated with B. burgdorferi stimulation that differs from stimulation with lipoteichoic acid, a TLR2 agonist. These studies revealed that exposure of mo-DCs to live B. burgdorferi drives the expression of both pro- and anti-inflammatory cytokines as well as immunoregulatory molecules (e.g., PD-L1, IDO1, Tim3). Collectively, these studies indicate that the interaction of live B. burgdorferi with mo-DCs promotes a unique mature DC phenotype that likely impacts the nature of the adaptive T cell response generated in human Lyme disease.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Humanos , Células Dendríticas , Linfocitos T/metabolismo , Citocinas/metabolismo
4.
J Am Chem Soc ; 146(26): 17801-17816, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38887845

RESUMEN

Gangliosides, sialic acid bearing glycosphingolipids, are components of the outer leaflet of plasma membranes of all vertebrate cells. They contribute to cell regulation by interacting with proteins in their own membranes (cis) or their extracellular milieu (trans). As amphipathic membrane constituents, gangliosides present challenges for identifying their ganglioside protein interactome. To meet these challenges, we synthesized bifunctional clickable photoaffinity gangliosides, delivered them to plasma membranes of cultured cells, then captured and identified their interactomes using proteomic mass spectrometry. Installing probes on ganglioside lipid and glycan moieties, we captured cis and trans ganglioside-protein interactions. Ganglioside interactomes varied with the ganglioside structure, cell type, and site of the probe (lipid or glycan). Gene ontology revealed that gangliosides engage with transmembrane transporters and cell adhesion proteins including integrins, cadherins, and laminins. The approach developed is applicable to other gangliosides and cell types, promising to provide insights into molecular and cellular regulation by gangliosides.


Asunto(s)
Química Clic , Gangliósidos , Gangliósidos/química , Gangliósidos/metabolismo , Humanos , Etiquetas de Fotoafinidad/química , Etiquetas de Fotoafinidad/síntesis química , Sondas Moleculares/química , Sondas Moleculares/síntesis química , Membrana Celular/metabolismo , Membrana Celular/química
5.
Hum Mol Genet ; 31(10): 1651-1672, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34888656

RESUMEN

Huntington's disease (HD) is an incurable neurodegenerative disorder caused by a CAG expansion in the huntingtin gene (HTT). Post-translational modifications of huntingtin protein (HTT), such as phosphorylation, acetylation and ubiquitination, have been implicated in HD pathogenesis. Arginine methylation/dimethylation is an important modification with an emerging role in neurodegeneration; however, arginine methylation of HTT remains largely unexplored. Here we report nearly two dozen novel arginine methylation/dimethylation sites on the endogenous HTT from human and mouse brain and human cells suggested by mass spectrometry with data-dependent acquisition. Targeted quantitative mass spectrometry identified differential arginine methylation at specific sites in HD patient-derived striatal precursor cell lines compared to normal controls. We found that HTT can interact with several type I protein arginine methyltransferases (PRMTs) via its N-terminal domain. Using a combination of in vitro methylation and cell-based experiments, we identified PRMT4 (CARM1) and PRMT6 as major enzymes methylating HTT at specific arginines. Alterations of these methylation sites had a profound effect on biochemical properties of HTT rendering it less soluble in cells and affected its liquid-liquid phase separation and phase transition patterns in vitro. We found that expanded HTT 1-586 fragment can form liquid-like assemblies, which converted into solid-like assemblies when the R200/205 methylation sites were altered. Methyl-null alterations increased HTT toxicity to neuronal cells, while overexpression of PRMT 4 and 6 was beneficial for neuronal survival. Thus, arginine methylation pathways that involve specific HTT-modifying PRMT enzymes and modulate HTT biochemical and toxic properties could provide targets for HD-modifying therapies.


Asunto(s)
Arginina , Enfermedad de Huntington , Animales , Arginina/genética , Arginina/metabolismo , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/patología , Metilación , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Solubilidad
6.
Anal Biochem ; 678: 115262, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37507081

RESUMEN

Thousands of mammalian intracellular proteins are dynamically modified by O-linked ß-N-acetylglucosamine (O-GlcNAc). Global changes in O-GlcNAcylation have been associated with the development of cardiomyopathy, heart failure, hypertension, and neurodegenerative disease. Levels of O-GlcNAc in cells and tissues can be detected using numerous approaches; however, immunoblotting using GlcNAc-specific antibodies and lectins is commonplace. The goal of this study was to optimize the detection of O-GlcNAc in heart lysates by immunoblotting. Using a combination of tissue fractionation, immunoblotting, and galactosyltransferase labeling, as well as hearts from wild-type and O-GlcNAc transferase transgenic mice, we demonstrate that contractile proteins in the heart are differentially detected by two commercially available antibodies (CTD110.6 and RL2). As CTD110.6 displays poor reactivity toward contractile proteins, and as these proteins represent a major fraction of the heart proteome, a better assessment of cardiac O-GlcNAcylation is obtained in total tissue lysates with RL2. The data presented highlight tissue lysis approaches that should aid the assessment of the cardiac O-GlcNAcylation by immunoblotting.


Asunto(s)
Enfermedades Neurodegenerativas , Ratones , Animales , Anticuerpos/metabolismo , Proteoma/metabolismo , Corazón , Proteínas Contráctiles/metabolismo , Acetilglucosamina , Procesamiento Proteico-Postraduccional , Mamíferos/metabolismo
7.
Mol Cell Proteomics ; 20: 100069, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33716169

RESUMEN

The dynamic modification of specific serine and threonine residues of intracellular proteins by O-linked N-acetyl-ß-D-glucosamine (O-GlcNAc) mitigates injury and promotes cytoprotection in a variety of stress models. The O-GlcNAc transferase (OGT) and the O-GlcNAcase are the sole enzymes that add and remove O-GlcNAc, respectively, from thousands of substrates. It remains unclear how just two enzymes can be specifically controlled to affect glycosylation of target proteins and signaling pathways both basally and in response to stress. Several lines of evidence suggest that protein interactors regulate these responses by affecting OGT and O-GlcNAcase activity, localization, and substrate specificity. To provide insight into the mechanisms by which OGT function is controlled, we have used quantitative proteomics to define OGT's basal and stress-induced interactomes. OGT and its interaction partners were immunoprecipitated from OGT WT, null, and hydrogen peroxide-treated cell lysates that had been isotopically labeled with light, medium, and heavy lysine and arginine (stable isotopic labeling of amino acids in cell culture). In total, more than 130 proteins were found to interact with OGT, many of which change their association upon hydrogen peroxide stress. These proteins include the major OGT cleavage and glycosylation substrate, host cell factor 1, which demonstrated a time-dependent dissociation after stress. To validate less well-characterized interactors, such as glyceraldehyde 3-phosphate dehydrogenase and histone deacetylase 1, we turned to parallel reaction monitoring, which recapitulated our discovery-based stable isotopic labeling of amino acids in cell culture approach. Although the majority of proteins identified are novel OGT interactors, 64% of them are previously characterized glycosylation targets that contain varied domain architecture and function. Together these data demonstrate that OGT interacts with unique and specific interactors in a stress-responsive manner.


Asunto(s)
N-Acetilglucosaminiltransferasas/metabolismo , Estrés Oxidativo , Animales , Células Cultivadas , Fibroblastos/metabolismo , Ratones , N-Acetilglucosaminiltransferasas/genética , Mapas de Interacción de Proteínas , Proteómica
8.
J Proteome Res ; 21(10): 2277-2292, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36006872

RESUMEN

Previously, we reported that heterologous expression of an embryonic transcription factor, Tbx18, reprograms ventricular cardiomyocytes into induced pacemaker cells (Tbx18-iPMs), though the key pathways are unknown. Here, we have used a tandem mass tag proteomic approach to characterize the impact of Tbx18 on neonatal rat ventricular myocytes. Tbx18 expression triggered vast proteome remodeling. Tbx18-iPMs exhibited increased expression of known pacemaker ion channels, including Hcn4 and Cx45 as well as upregulation of the mechanosensitive ion channels Piezo1, Trpp2 (PKD2), and TrpM7. Metabolic pathways were broadly downregulated, as were ion channels associated with ventricular excitation-contraction coupling. Tbx18-iPMs also exhibited extensive intracellular cytoskeletal and extracellular matrix remodeling, including 96 differentially expressed proteins associated with the epithelial-to-mesenchymal transition (EMT). RNAseq extended coverage of low abundance transcription factors, revealing upregulation of EMT-inducing Snai1, Snai2, Twist1, Twist2, and Zeb2. Finally, network diffusion mapping of >200 transcriptional regulators indicates EMT and heart development factors occupy adjacent network neighborhoods downstream of Tbx18 but upstream of metabolic control factors. In conclusion, transdifferentiation of cardiac myocytes into pacemaker cells entails massive electrogenic, metabolic, and cytostructural remodeling. Structural changes exhibit hallmarks of the EMT. The results aid ongoing efforts to maximize the yield and phenotypic stability of engineered biological pacemakers.


Asunto(s)
Transdiferenciación Celular , Transición Epitelial-Mesenquimal , Miocitos Cardíacos , Proteínas de Dominio T Box , Animales , Transición Epitelial-Mesenquimal/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Miocitos Cardíacos/metabolismo , Proteoma/metabolismo , Proteómica , Ratas , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Canales Catiónicos TRPM/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
EMBO J ; 36(20): 2951-2967, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-28790177

RESUMEN

Neuronal inclusions of aggregated RNA-binding protein fused in sarcoma (FUS) are hallmarks of ALS and frontotemporal dementia subtypes. Intriguingly, FUS's nearly uncharged, aggregation-prone, yeast prion-like, low sequence-complexity domain (LC) is known to be targeted for phosphorylation. Here we map in vitro and in-cell phosphorylation sites across FUS LC We show that both phosphorylation and phosphomimetic variants reduce its aggregation-prone/prion-like character, disrupting FUS phase separation in the presence of RNA or salt and reducing FUS propensity to aggregate. Nuclear magnetic resonance spectroscopy demonstrates the intrinsically disordered structure of FUS LC is preserved after phosphorylation; however, transient domain collapse and self-interaction are reduced by phosphomimetics. Moreover, we show that phosphomimetic FUS reduces aggregation in human and yeast cell models, and can ameliorate FUS-associated cytotoxicity. Hence, post-translational modification may be a mechanism by which cells control physiological assembly and prevent pathological protein aggregation, suggesting a potential treatment pathway amenable to pharmacologic modulation.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteína FUS de Unión a ARN/metabolismo , Esclerosis Amiotrófica Lateral/patología , Línea Celular , Demencia Frontotemporal/patología , Humanos , Espectroscopía de Resonancia Magnética , Fosforilación , Agregación Patológica de Proteínas , Conformación Proteica , Proteína FUS de Unión a ARN/química
10.
Chem Res Toxicol ; 34(4): 1183-1196, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33793228

RESUMEN

Outdoor air pollution, a spatially and temporally complex mixture, is a human carcinogen. However, ambient measurements may not reflect subject-level exposures, personal monitors do not assess internal dose, and spot assessments of urinary biomarkers may not recapitulate chronic exposures. Nucleophilic sites in serum albumin-particularly the free thiol at Cys34-form adducts with electrophiles. Due to the 4-week lifetime of albumin in circulation, accumulating adducts can serve as intermediate- to long-residence biomarkers of chronic exposure and implicate potential biological effects. Employing nanoflow liquid chromatography-high-resolution mass spectrometry (nLC-HRMS) and parallel reaction monitoring (PRM), we have developed and validated a novel targeted albumin adductomics platform capable of simultaneously monitoring dozens of Cys34 adducts per sample in only 2.5 µL of serum, with on-column limits of detection in the low-femtomolar range. Using this platform, we characterized the magnitude and impact of ambient outdoor air pollution exposures with three repeated measurements over 84 days in n = 26 nonsmoking women (n = 78 total samples) from Qidong, China, an area with a rising burden of lung cancer incidence. In concordance with seasonally rising ambient concentrations of NO2, SO2, and PM10 measured at stationary monitors, we observed elevations in concentrations of Cys34 adducts of benzoquinone (p < 0.05), benzene diol epoxide (BDE; p < 0.05), crotonaldehyde (p < 0.01), and oxidation (p < 0.001). Regression analysis revealed significant elevations in oxidation and BDE adduct concentrations of 300% to nearly 700% per doubling of ambient airborne pollutant levels (p < 0.05). Notably, the ratio of irreversibly oxidized to reduced Cys34 rose more than 3-fold during the 84-day period, revealing a dramatic perturbation of serum redox balance and potentially serving as a portent of increased pollution-related mortality risk. Our targeted albumin adductomics assay represents a novel and flexible approach for sensitive and multiplexed internal dosimetry of environmental exposures, providing a new strategy for personalized biomonitoring and prevention.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo Biológico , Carcinógenos/análisis , Albúmina Sérica/análisis , Humanos , Estructura Molecular
11.
J Biol Chem ; 294(27): 10471-10489, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31118223

RESUMEN

Melanins are synthesized macromolecules that are found in all biological kingdoms. These pigments have a myriad of roles that range from microbial virulence to key components of the innate immune response in invertebrates. Melanins also exhibit unique properties with potential applications in physics and material sciences, ranging from electrical batteries to novel therapeutics. In the fungi, melanins, such as eumelanins, are components of the cell wall that provide protection against biotic and abiotic elements. Elucidation of the smallest fungal cell wall-associated melanin unit that serves as a building block is critical to understand the architecture of these polymers, its interaction with surrounding components, and their functional versatility. In this study, we used isopycnic gradient sedimentation, NMR, EPR, high-resolution microscopy, and proteomics to analyze the melanin in the cell wall of the human pathogenic fungus Cryptococcus neoformans We observed that melanin is assembled into the cryptococcal cell wall in spherical structures ∼200 nm in diameter, termed melanin granules, which are in turn composed of nanospheres ∼30 nm in diameter, termed fungal melanosomes. We noted that melanin granules are closely associated with proteins that may play critical roles in the fungal melanogenesis and the supramolecular structure of this polymer. Using this structural information, we propose a model for C. neoformans' melanization that is similar to the process used in animal melanization and is consistent with the phylogenetic relatedness of the fungal and animal kingdoms.


Asunto(s)
Pared Celular/metabolismo , Cryptococcus neoformans/metabolismo , Melaninas/química , Cryptococcus neoformans/clasificación , Levodopa/química , Espectroscopía de Resonancia Magnética , Melaninas/análisis , Melaninas/metabolismo , Microscopía Electrónica de Transmisión , Nanopartículas/química , Tamaño de la Partícula , Filogenia , Proteómica
12.
Mol Cell Biochem ; 463(1-2): 13-31, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31541353

RESUMEN

Insulin stimulates de novo lipid synthesis in the liver and in cultured hepatocytes via its ability to activate sterol regulatory element-binding protein 1c (SREBP-1c). Although PI3K-AKT-mTORC1-p70S6K-signaling kinases are known to drive feed-forward expression of SREBP-1c, the identity of the phosphorylated amino acid residue(s) putatively involved in insulin-stimulated de novo lipogenesis remains elusive. We obtained in silico and mass spectrometry evidence, that was combined with siRNA strategies, to discover that insulin-induced phosphorylation of serine 418, serine 419, and serine 422 in rat SREBP-1c was most likely mediated by p70S6 kinase. Here, for the first time, we show that insulin-induced phosphorylation of these 3 serine residues mainly impinged on the mechanisms of proteostasis of both full-length and mature SREBP-1c in the McArdle-RH7777 hepatoma cells. Consistent with this conclusion, nascent SREBP-1c, substituted with phosphomimetic aspartic acid residues at these 3 sites, was resistant to proteasomal degradation. As a consequence, endoplasmic reticulum to Golgi migration and proteolytic maturation of pSREBP-1c was significantly enhanced which led to increased accumulation of mature nSREBP-1c, even in the absence of insulin. Remarkably, aspartic acid substitutions at S418, S419 and S422 also protected the nascent SREBP-1c from ubiquitin-mediated proteasome degradation thus increasing its steady-state levels and transactivation potential in the nucleus. These complementary effects of p70S6K-mediated phosphorylation on proteostasis of pSREBP-1c were necessary and sufficient to account for insulin's ability to enhance transcription of genes controlling de novo lipogenesis in hepatocytes.


Asunto(s)
Hepatocitos/metabolismo , Lípidos/biosíntesis , Lipogénesis , Proteostasis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular Tumoral , Hepatocitos/citología , Humanos , Lípidos/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Serina-Treonina Quinasas TOR/genética , Transcripción Genética
13.
J Biol Chem ; 292(16): 6493-6511, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28232487

RESUMEN

The dynamic post-translational modification O-linked ß-N-acetylglucosamine (O-GlcNAc) regulates thousands of nuclear, cytoplasmic, and mitochondrial proteins. Cellular stress, including oxidative stress, results in increased O-GlcNAcylation of numerous proteins, and this increase is thought to promote cell survival. The mechanisms by which the O-GlcNAc transferase (OGT) and the O-GlcNAcase (OGA), the enzymes that add and remove O-GlcNAc, respectively, are regulated during oxidative stress to alter O-GlcNAcylation are not fully characterized. Here, we demonstrate that oxidative stress leads to elevated O-GlcNAc levels in U2OS cells but has little impact on the activity of OGT. In contrast, the expression and activity of OGA are enhanced. We hypothesized that this seeming paradox could be explained by proteins that bind to and control the local activity or substrate targeting of OGA, thereby resulting in the observed stress-induced elevations of O-GlcNAc. To identify potential protein partners, we utilized BioID proximity biotinylation in combination with stable isotopic labeling of amino acids in cell culture (SILAC). This analysis revealed 90 OGA-interacting partners, many of which exhibited increased binding to OGA upon stress. The associations of OGA with fatty acid synthase (FAS), filamin-A, heat shock cognate 70-kDa protein, and OGT were confirmed by co-immunoprecipitation. The pool of OGA bound to FAS demonstrated a substantial (∼85%) reduction in specific activity, suggesting that FAS inhibits OGA. Consistent with this observation, FAS overexpression augmented stress-induced O-GlcNAcylation. Although the mechanism by which FAS sequesters OGA remains unknown, these data suggest that FAS fine-tunes the cell's response to stress and injury by remodeling cellular O-GlcNAcylation.


Asunto(s)
Ácido Graso Sintasas/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Estrés Oxidativo , Animales , Biotinilación , Catálisis , Dominio Catalítico , Línea Celular Tumoral , Filaminas/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Glicoproteínas/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Humanos , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteómica , Transducción de Señal , Espectrometría de Masas en Tándem
14.
J Biol Chem ; 292(33): 13541-13550, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28676499

RESUMEN

Phosphoinositide 3-kinases (PI3Ks) are ubiquitous lipid kinases that activate signaling cascades controlling cell survival, proliferation, protein synthesis, and vesicle trafficking. PI3Ks have dual kinase specificity: a lipid kinase activity that phosphorylates the 3'-hydroxyl of phosphoinositides and a protein-kinase activity that includes autophosphorylation. Despite the wealth of biochemical and structural information on PI3Kα, little is known about the identity and roles of individual active-site residues in catalysis. To close this gap, we explored the roles of residues of the catalytic domain and the regulatory subunit of human PI3Kα in lipid and protein phosphorylation. Using site-directed mutagenesis, kinetic assays, and quantitative mass spectrometry, we precisely mapped key residues involved in substrate recognition and catalysis by PI3Kα. Our results revealed that Lys-776, located in the P-loop of PI3Kα, is essential for the recognition of lipid and ATP substrates and also plays an important role in PI3Kα autophosphorylation. Replacement of the residues His-936 and His-917 in the activation and catalytic loops, respectively, with alanine dramatically changed PI3Kα kinetics. Although H936A inactivated the lipid kinase activity without affecting autophosphorylation, H917A abolished both the lipid and protein kinase activities of PI3Kα. On the basis of these kinetic and structural analyses, we propose possible mechanistic roles of these critical residues in PI3Kα catalysis.


Asunto(s)
Adenosina Trifosfato/metabolismo , Modelos Moleculares , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Procesamiento Proteico-Postraduccional , Adenosina Trifosfato/química , Sustitución de Aminoácidos , Sitios de Unión , Biocatálisis , Dominio Catalítico , Fosfatidilinositol 3-Quinasa Clase I , Fosfatidilinositol 3-Quinasa Clase Ia , Histidina/química , Histidina/metabolismo , Humanos , Cinética , Lisina/química , Lisina/metabolismo , Conformación Molecular , Mutagénesis Sitio-Dirigida , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 4,5-Difosfato/química , Fosforilación , Mutación Puntual , Conformación Proteica , Multimerización de Proteína
15.
J Proteome Res ; 16(10): 3672-3687, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28876938

RESUMEN

Chinese hamster ovary cells represent the dominant host for therapeutic recombinant protein production. However, few large-scale data sets have been generated to characterize this host organism and derived CHO cell lines at the proteomics level. Consequently, an extensive label-free quantitative proteomics analysis of two cell lines (CHO-S and CHO DG44) and two Chinese hamster tissues (liver and ovary) was used to identify a total of 11 801 unique proteins containing at least two unique peptides. 9359 unique proteins were identified specifically in the cell lines, representing a 56% increase over previous work. Additionally, 6663 unique proteins were identified across liver and ovary tissues, providing the first Chinese hamster tissue proteome. Protein expression was more conserved within cell lines during both growth phases than across cell lines, suggesting large genetic differences across cell lines. Overall, both gene ontology and KEGG pathway analysis revealed enrichment of cell-cycle activity in cells. In contrast, upregulated molecular functions in tissue include glycosylation and lipid transporter activity. Furthermore, cellular components including Golgi apparatus are upregulated in both tissues. In conclusion, this large-scale proteomics analysis enables us to delineate specific changes between tissues and cells derived from these tissues, which can help explain specific tissue function and the adaptations cells incur for applications in biopharmaceutical productions.


Asunto(s)
Células CHO/metabolismo , Proteoma/genética , Proteómica , Proteínas Recombinantes/genética , Animales , Cricetinae , Cricetulus/genética , Cricetulus/metabolismo , Proteínas Recombinantes/metabolismo , Espectrometría de Masas en Tándem
16.
J Proteome Res ; 16(8): 2692-2708, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28653853

RESUMEN

Post-translational modifications (PTMs) of proteins regulate various cellular processes. PTMs of polyglutamine-expanded huntingtin (Htt) protein, which causes Huntington's disease (HD), are likely modulators of HD pathogenesis. Previous studies have identified and characterized several PTMs on exogenously expressed Htt fragments, but none of them were designed to systematically characterize PTMs on the endogenous full-length Htt protein. We found that full-length endogenous Htt, which was immunoprecipitated from HD knock-in mouse and human post-mortem brain, is suitable for detection of PTMs by mass spectrometry. Using label-free and mass tag labeling-based approaches, we identified near 40 PTMs, of which half are novel (data are available via ProteomeXchange with identifier PXD005753). Most PTMs were located in clusters within predicted unstructured domains rather than within the predicted α-helical structured HEAT repeats. Using quantitative mass spectrometry, we detected significant differences in the stoichiometry of several PTMs between HD and WT mouse brain. The mass-spectrometry identification and quantitation were verified using phospho-specific antibodies for selected PTMs. To further validate our findings, we introduced individual PTM alterations within full-length Htt and identified several PTMs that can modulate its subcellular localization in striatal cells. These findings will be instrumental in further assembling the Htt PTM framework and highlight several PTMs as potential therapeutic targets for HD.


Asunto(s)
Proteína Huntingtina/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Encéfalo/metabolismo , Química Encefálica , Cuerpo Estriado/patología , Humanos , Proteína Huntingtina/química , Enfermedad de Huntington/patología , Espectrometría de Masas/métodos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Péptido Hidrolasas/química , Fosforilación , Dominios Proteicos
17.
J Proteome Res ; 15(12): 4318-4336, 2016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27669760

RESUMEN

O-Linked N-acetyl-ß-d-glucosamine (O-GlcNAc) is a dynamic post-translational modification that modifies and regulates over 3000 nuclear, cytoplasmic, and mitochondrial proteins. Upon exposure to stress and injury, cells and tissues increase the O-GlcNAc modification, or O-GlcNAcylation, of numerous proteins promoting the cellular stress response and thus survival. The aim of this study was to identify proteins that are differentially O-GlcNAcylated upon acute oxidative stress (H2O2) to provide insight into the mechanisms by which O-GlcNAc promotes survival. We achieved this goal by employing Stable Isotope Labeling of Amino Acids in Cell Culture (SILAC) and a novel "G5-lectibody" immunoprecipitation strategy that combines four O-GlcNAc-specific antibodies (CTD110.6, RL2, HGAC39, and HGAC85) and the lectin WGA. Using the G5-lectibody column in combination with basic reversed phase chromatography and C18 RPLC-MS/MS, 990 proteins were identified and quantified. Hundreds of proteins that were identified demonstrated increased (>250) or decreased (>110) association with the G5-lectibody column upon oxidative stress, of which we validated the O-GlcNAcylation status of 24 proteins. Analysis of proteins with altered glycosylation suggests that stress-induced changes in O-GlcNAcylation cluster into pathways known to regulate the cell's response to injury and include protein folding, transcriptional regulation, epigenetics, and proteins involved in RNA biogenesis. Together, these data suggest that stress-induced O-GlcNAcylation regulates numerous and diverse cellular pathways to promote cell and tissue survival.


Asunto(s)
Acetilglucosamina/metabolismo , Supervivencia Celular , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Acetilglucosamina/inmunología , Acilación , Animales , Anticuerpos , Cromatografía de Fase Inversa , Humanos , Peróxido de Hidrógeno/farmacología , Inmunoprecipitación , Marcaje Isotópico , Lectinas/inmunología , Estrés Oxidativo/efectos de los fármacos , Proteoma/análisis
18.
J Proteome Res ; 15(9): 3009-28, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27399916

RESUMEN

Here, we examine key regulatory pathways underlying the transition from compensated hypertrophy (HYP) to decompensated heart failure (HF) and sudden cardiac death (SCD) in a guinea pig pressure-overload model by integrated multiome analysis. Relative protein abundances from sham-operated HYP and HF hearts were assessed by iTRAQ LC-MS/MS. Metabolites were quantified by LC-MS/MS or GC-MS. Transcriptome profiles were obtained using mRNA microarrays. The guinea pig HF proteome exhibited classic biosignatures of cardiac HYP, left ventricular dysfunction, fibrosis, inflammation, and extravasation. Fatty acid metabolism, mitochondrial transcription/translation factors, antioxidant enzymes, and other mitochondrial procsses, were downregulated in HF but not HYP. Proteins upregulated in HF implicate extracellular matrix remodeling, cytoskeletal remodeling, and acute phase inflammation markers. Among metabolites, acylcarnitines were downregulated in HYP and fatty acids accumulated in HF. The correlation of transcript and protein changes in HF was weak (R(2) = 0.23), suggesting post-transcriptional gene regulation in HF. Proteome/metabolome integration indicated metabolic bottlenecks in fatty acyl-CoA processing by carnitine palmitoyl transferase (CPT1B) as well as TCA cycle inhibition. On the basis of these findings, we present a model of cardiac decompensation involving impaired nuclear integration of Ca(2+) and cyclic nucleotide signals that are coupled to mitochondrial metabolic and antioxidant defects through the CREB/PGC1α transcriptional axis.


Asunto(s)
Muerte Súbita Cardíaca , Insuficiencia Cardíaca/metabolismo , Metabolómica/métodos , Proteómica/métodos , Animales , Cardiomegalia/metabolismo , Ciclo del Ácido Cítrico , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ácidos Grasos/metabolismo , Cobayas , Hipertensión/complicaciones , Metabolismo de los Lípidos , Metaboloma , Transcriptoma
19.
Proteomics ; 15(2-3): 591-607, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25263469

RESUMEN

The modification of intracellular proteins by monosaccharides of O-linked ß-N-acetylglucosamine (O-GlcNAc) is an essential and dynamic PTM of metazoans. The addition and removal of O-GlcNAc is catalyzed by the O-GlcNAc transferase (OGT) and O-GlcNAcase, respectively. One mechanism by which O-GlcNAc is thought to mediate proteins is by regulating phosphorylation. To provide insight into the pathways regulated by O-GlcNAc, we have utilized SILAC-based quantitative proteomics to carry out comparisons of site-specific phosphorylation in OGT wild-type and Null cells. Quantitation of the phosphoproteome demonstrated that of 5529 phosphoserine, phosphothreonine, and phosphotyrosine sites, 232 phosphosites were upregulated and 133 downregulated in the absence of O-GlcNAc. Collectively, these data suggest that deletion of OGT has a profound effect on the phosphorylation of cell cycle and DNA damage response proteins. Key events were confirmed by biochemical analyses and demonstrate an increase in the activating autophosphorylation event on ATM (Ser1987) and on ATM's downstream targets p53, H2AX, and Chk2. Together, these data support widespread changes in the phosphoproteome upon removal of O-GlcNAc, suggesting that O-GlcNAc regulates processes such as the cell cycle, genomic stability, and lysosomal biogenesis. All MS data have been deposited in the ProteomeXchange with identifier PXD001153 (http://proteomecentral.proteomexchange.org/dataset/PXD001153).


Asunto(s)
Daño del ADN , N-Acetilglucosaminiltransferasas/metabolismo , Fosfopéptidos/análisis , Proteínas/metabolismo , Transducción de Señal , Acetilglucosamina/metabolismo , Secuencia de Aminoácidos , Ciclo Celular , Línea Celular , Eliminación de Gen , Glicosilación , Humanos , Datos de Secuencia Molecular , N-Acetilglucosaminiltransferasas/genética , Fosfopéptidos/metabolismo , Fosforilación , Proteínas/química , Proteómica , Espectrometría de Masas en Tándem
20.
J Proteome Res ; 14(4): 1645-56, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25734908

RESUMEN

Cellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a phylogenetically conserved, ubiquitous enzyme that plays an indispensable role in energy metabolism. Although a wealth of information is available on cellular GAPDH, there is a clear paucity of data on its extracellular counterpart (i.e., the secreted or extracellular GAPDH). Here, we show that the extracellular GAPDH in human serum is a multimeric, high-molecular-weight, yet glycolytically active enzyme. The high-molecular-weight multimers of serum GAPDH were identified by immunodetection on one- and two-dimensional gel electrophoresis using multiple antibodies specific for various epitopes of GAPDH. Partial purification of serum GAPDH by DEAE Affigel affinity/ion exchange chromatography further established the multimeric composition of serum GAPDH. In vitro data demonstrated that human cell lines secrete a multimeric, high-molecular-weight enzyme similar to that of serum GAPDH. Furthermore, LC-MS/MS analysis of extracellular GAPDH from human cell lines confirmed the presence of unique peptides of GAPDH in the high-molecular-weight subunits. Furthermore, data from pulse-chase experiments established the presence of high-molecular-weight subunits in the secreted, extracellular GAPDH. Taken together, our findings demonstrate the presence of a high-molecular-weight, enzymatically active secretory GAPDH in human serum that may have a hitherto unknown function in humans.


Asunto(s)
Líquido Extracelular/enzimología , Gliceraldehído-3-Fosfato Deshidrogenasas/análisis , Suero/enzimología , Secuencia de Aminoácidos , Animales , Línea Celular , Cromatografía por Intercambio Iónico , Cromatografía Liquida , Electroforesis en Gel Bidimensional , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Humanos , Mamíferos , Datos de Secuencia Molecular , Peso Molecular , Multimerización de Proteína , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA