Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(7)2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047805

RESUMEN

Graves' disease (GD) is a thyroid-specific autoimmune disease with a high prevalence worldwide. The disease is primarily mediated by B cells, which produce autoantibodies against the thyroid-stimulating hormone receptor (TSHR), chronically stimulating it and leading to high levels of thyroid hormones in the body. Interest in characterizing the immune response in GD has motivated many phenotyping studies. The immunophenotype of the cells involved and the interplay between them and their secreted factors are crucial to understanding disease progression and future treatment options. T cell populations are markedly distinct, including increased levels of Th17 and follicular helper T cells (Tfh), while Treg cells appear to be impaired. Some B cells subsets are autoreactive, and anti-TSHR antibodies are the key disease-causing outcome of this interplay. Though some consensus across phenotyping studies will be discussed here, there are also complexities that are yet to be resolved. A better understanding of the immunophenotype of Graves' disease can lead to improved treatment strategies and novel drug targets.


Asunto(s)
Enfermedad de Graves , Enfermedad de Hashimoto , Humanos , Enfermedad de Graves/etiología , Receptores de Tirotropina , Autoanticuerpos , Hormonas Tiroideas , Linfocitos T Reguladores
2.
Exp Cell Res ; 403(1): 112567, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33812866

RESUMEN

We chose to evaluate Hypoxanthine Guanine Phosphoribosyltransferase (HPRT) as a possible biomarker for prostate cancer due to its involvement in nucleotide synthesis and cell cycle progression. We utilized two prostate cancer cell lines (PC3 and DU145) along with patient tissue and knockdowns to evaluate overall HPRT expression. The surface localization of HPRT was determined utilizing flow cytometry, confocal microscopy, and scanning electron microscopy followed by ADCC to evaluate targeting potential. We found significant upregulation of HPRT within malignant samples with approximately 47% of patients had elevated levels of HPRT compared to normal controls. We also observed a significant association between HPRT and the plasma membrane of DU145 cells (p = 0.0004), but found no presence on PC3 cells (p = 0.14). This was confirmed with scanning electron microscopy and confocal microscopy. ADCC experiments were performed to determine whether HPRT could be used as a target antigen for selective cell-mediated killing. We found that DU145 cells treated with HPRT antibodies had a significantly higher incidence of cell death than both isotype treated samples and PC3 cells treated with the same concentrations of HPRT antibody. Finally, we determined that p53 had a significant impact on HPRT expression both internally and on the surface of cancer cells. These results suggest HPRT as a possible biomarker target for the treatment of patients with prostate cancer.


Asunto(s)
División Celular/fisiología , Citotoxicidad Inmunológica/inmunología , Hipoxantina Fosforribosiltransferasa/metabolismo , Neoplasias de la Próstata/metabolismo , Línea Celular , Membrana Celular/metabolismo , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Hipoxantina Fosforribosiltransferasa/inmunología , Masculino , Neoplasias de la Próstata/inmunología , Proteína p53 Supresora de Tumor/metabolismo
3.
Cancer Cell Int ; 20: 375, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32782434

RESUMEN

BACKGROUND: The aim of this study is to determine whether Hypoxanthine Guanine Phosphoribosyltransferase (HPRT) could be used as a biomarker for the diagnosis and treatment of B cell malignancies. With 4.3% of all new cancers diagnosed as Non-Hodgkin lymphoma, finding new biomarkers for the treatment of B cell cancers is an ongoing pursuit. HPRT is a nucleotide salvage pathway enzyme responsible for the synthesis of guanine and inosine throughout the cell cycle. METHODS: Raji cells were used for this analysis due to their high HPRT internal expression. Internal expression was evaluated utilizing western blotting and RNA sequencing. Surface localization was analyzed using flow cytometry, confocal microscopy, and membrane biotinylation. To determine the source of HPRT surface expression, a CRISPR knockdown of HPRT was generated and confirmed using western blotting. To determine clinical significance, patient blood samples were collected and analyzed for HPRT surface localization. RESULTS: We found surface localization of HPRT on both Raji cancer cells and in 77% of the malignant ALL samples analyzed and observed no significant expression in healthy cells. Surface expression was confirmed in Raji cells with confocal microscopy, where a direct overlap between HPRT specific antibodies and a membrane-specific dye was observed. HPRT was also detected in biotinylated membranes of Raji cells. Upon HPRT knockdown in Raji cells, we found a significant reduction in surface expression, which shows that the HPRT found on the surface originates from the cells themselves. Finally, we found that cells that had elevated levels of HPRT had a direct correlation to XRCC2, BRCA1, PIK3CA, MSH2, MSH6, WDYHV1, AK7, and BLMH expression and an inverse correlation to PRKD2, PTGS2, TCF7L2, CDH1, IL6R, MC1R, AMPD1, TLR6, and BAK1 expression. Of the 17 genes with significant correlation, 9 are involved in cellular proliferation and DNA synthesis, regulation, and repair. CONCLUSIONS: As a surface biomarker that is found on malignant cells and not on healthy cells, HPRT could be used as a surface antigen for targeted immunotherapy. In addition, the gene correlations show that HPRT may have an additional role in regulation of cancer proliferation that has not been previously discovered.

4.
Cancer Cell Int ; 20: 127, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32317865

RESUMEN

BACKGROUND: Thymidine kinase 1 (TK1) is a pyrimidine salvage pathway enzyme that is up-regulated in malignant tissues and elevated in the serum of cancer patients. While TK1 has been well established as a tumor biomarker, little has been done to explore its potential as a tumor target. Recently, we reported the membrane expression of TK1 on malignant cells, but not on normal cells. This study explores the possible use of monoclonal antibodies for the targeting of membrane associated TK1 in lung, breast, colon and prostate cancer cells. METHODS: We generated and evaluated a panel of monoclonal antibodies against six different epitopes exposed in the tetrameric form of TK1. Antibodies were developed with hybridoma technology and validated with Western blot, siRNA TK1 knockdown, enzyme-linked immunosorbent assay (ELISA) and flow cytometry. The therapeutic potential of the antibodies was evaluated in vitro in antibody-dependent cell-mediated-cytotoxicity (ADCC) experiments. RESULTS: Binding of the antibodies to TK1 was confirmed by Western blot in purified recombinant protein, cancer serum, and cell lysate. After a TK1 knockdown was performed, a reduction of TK1 expression was observed with five antibodies. Using indirect ELISA, we identified 3B2E11, 9C10, 7H2, 3B4, 8G2 among the most sensitive antibodies (LOD = 10.73-66.9 pg/ml). Surface expression of TK1 on the membrane of various cancer cell lines was analyzed with flow cytometry. Antibodies 8G2, 3B4, 7HD and 5F7G11 detected TK1 on the membrane of various cancer cell lines, including lung, prostate, colon and breast. No significant binding was detected on normal lymphocytes. Increased cytolysis of lung (~ 70%. p = 0.0001), breast (~ 70%, p = 0.0461) and colon (~ 50% p = 0.0216) cancer cells by effector cells was observed when anti-TK1 antibodies were added during ADCC experiments. CONCLUSIONS: The antibodies developed showed potential to be used to detect and target TK1 on the membrane of various tumor cells. The targeting of TK1 in malignant cells using monoclonal antibodies may be a feasible approach for the elimination of high TK1 expressing tumor cells.

5.
Cancer Cell Int ; 19: 19, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30679932

RESUMEN

BACKGROUND: Incidence of endometrial cancer are rising both in the United States and worldwide. As endometrial cancer becomes more prominent, the need to develop and characterize biomarkers for early stage diagnosis and the treatment of endometrial cancer has become an important priority. Several biomarkers currently used to diagnose endometrial cancer are directly related to obesity. Although epigenetic and mutational biomarkers have been identified and have resulted in treatment options for patients with specific aberrations, many tumors do not harbor those specific aberrations. A promising alternative is to determine biomarkers based on differential gene expression, which can be used to estimate prognosis. METHODS: We evaluated 589 patients to determine differential expression between normal and malignant patient samples. We then supplemented these evaluations with immunohistochemistry staining of endometrial tumors and normal tissues. Additionally, we used the Library of Integrated Network-based Cellular Signatures to evaluate the effects of 1826 chemotherapy drugs on 26 cell lines to determine the effects of each drug on HPRT1 and AURKA expression. RESULTS: Expression of HPRT1, Jag2, AURKA, and PGK1 were elevated when compared to normal samples, and HPRT1 and PGK1 showed a stepwise elevation in expression that was significantly related to cancer grade. To determine the prognostic potential of these genes, we evaluated patient outcome and found that levels of both HPRT1 and AURKA were significantly correlated with overall patient survival. When evaluating drugs that had the most significant effect on lowering the expression of HPRT1 and AURKA, we found that Topo I and MEK inhibitors were most effective at reducing HPRT1 expression. Meanwhile, drugs that were effective at reducing AURKA expression were more diverse (MEK, Topo I, MELK, HDAC, etc.). The effects of these drugs on the expression of HPRT1 and AURKA provides insight into their role within cellular maintenance. CONCLUSIONS: Collectively, these data show that JAG2, AURKA, PGK1, and HRPT1 have the potential to be used independently as diagnostic, prognostic, or treatment biomarkers in endometrial cancer. Expression levels of these genes may provide physicians with insight into tumor aggressiveness and chemotherapy drugs that are well suited to individual patients.

7.
Cancer Cell Int ; 18: 135, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30214377

RESUMEN

BACKGROUND: Lung, breast, and colorectal malignancies are the leading cause of cancer-related deaths in the world causing over 2.8 million cancer-related deaths yearly. Despite efforts to improve prevention methods, early detection, and treatments, survival rates for advanced stage lung, breast, and colon cancer remain low, indicating a critical need to identify cancer-specific biomarkers for early detection and treatment. Thymidine kinase 1 (TK1) is a nucleotide salvage pathway enzyme involved in cellular proliferation and considered an important tumor proliferation biomarker in the serum. In this study, we further characterized TK1's potential as a tumor biomarker and immunotherapeutic target and clinical relevance. METHODS: We assessed TK1 surface localization by flow cytometry and confocal microscopy in lung (NCI-H460, A549), breast (MDA-MB-231, MCF7), and colorectal (HT-29, SW620) cancer cell lines. We also isolated cell surface proteins from HT-29 cells and performed a western blot confirming the presence of TK1 on cell membrane protein fractions. To evaluate TK1's clinical relevance, we compared TK1 expression levels in normal and malignant tissue through flow cytometry and immunohistochemistry. We also analyzed RNA-Seq data from The Cancer Genome Atlas (TCGA) to assess differential expression of the TK1 gene in lung, breast, and colorectal cancer patients. RESULTS: We found significant expression of TK1 on the surface of NCI-H460, A549, MDA-MB-231, MCF7, and HT-29 cell lines and a strong association between TK1's localization with the membrane through confocal microscopy and Western blot. We found negligible TK1 surface expression in normal healthy tissue and significantly higher TK1 expression in malignant tissues. Patient data from TCGA revealed that the TK1 gene expression is upregulated in cancer patients compared to normal healthy patients. CONCLUSIONS: Our results show that TK1 localizes on the surface of lung, breast, and colorectal cell lines and is upregulated in malignant tissues and patients compared to healthy tissues and patients. We conclude that TK1 is a potential clinical biomarker for the treatment of lung, breast, and colorectal cancer.

8.
Phytother Res ; 29(3): 317-22, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25339289

RESUMEN

The immune system has capacity to suppress the development or progression of various malignancies including cancer. Research on the immunomodulating properties of polysaccharides obtained from plants, microorganisms, marine organisms, and fungi is growing rapidly. Among the various potential sources, lichens, symbiotic systems involving a fungus and an alga and/or a cyanobacterium, show promise as a potential source of immunomodulating compounds. It is well known that lichens produce an abundance of structurally diverse polysaccharides. However, only a limited number of studies have explored the immunostimulating properties of lichen polysaccharides. Published studies have shown that some lichen polysaccharides enhance production of nitrous oxide (NO) by macrophages and also alter the production levels of various proinflammatory and antiinflammatory cytokines (IL-10, IL-12, IL-1ß, TNF-α, and IFN-α/ß) by macrophages and dendritic cells. Although there are only a limited number of studies examining the role of lichen polysaccharides, all results suggest that lichen polysaccharides can induce immunomodulatory responses in macrophages and dendritic cells. Thus, a detailed evaluation of immunomodulatory capacity of lichen polysaccharides could provide a unique opportunity for the discovery of novel therapeutic agents.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Líquenes/química , Polisacáridos/farmacología , Animales , Células Dendríticas/efectos de los fármacos , Humanos , Interleucina-10/inmunología , Interleucina-12/inmunología , Interleucina-1beta/inmunología , Macrófagos/efectos de los fármacos , Óxido Nítrico/inmunología , Factor de Necrosis Tumoral alfa/inmunología
9.
Phytother Res ; 29(1): 100-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25257119

RESUMEN

Cancer is the second leading cause of human deaths in the USA. Despite continuous efforts to treat cancer over the past 50 years, human mortality rates have not decreased significantly. Natural products, such as lichens, have been good sources of anticancer drugs. This study reports the cytotoxic activity of crude extracts of 17 lichen species against Burkitt's lymphoma (Raji) cells. Out of the 17 lichen species, extracts from 14 species showed cytotoxicity against Raji cells. On the basis of IC50 values, we selected Xanthoparmelia chlorochroa and Tuckermannopsis ciliaris to study the mechanism of cell death. Viability of normal lymphocytes was not affected by the extracts of X. chlorochroa and T. ciliaris. We found that extracts from both lichens decreased proliferation, accumulated cells at the G0 /G1 stage, and caused apoptosis in a dose-dependent manner. Both lichen extracts also caused upregulation of p53. The T. ciliaris extract upregulated the expression of TK1 but X. chlorochroa did not. We also found that usnic, salazinic, constictic, and norstictic acids were present in the extract of X. chlorochroa, whereas protolichesterinic acid in T. ciliaris extracts. Our data demonstrate that lichen extracts merit further research as a potential source of anticancer drugs.


Asunto(s)
Antineoplásicos/farmacología , Líquenes/química , 4-Butirolactona/análogos & derivados , Apoptosis/efectos de los fármacos , Benzofuranos , Línea Celular Tumoral/efectos de los fármacos , Supervivencia Celular , Humanos , Concentración 50 Inhibidora , Lactonas , Linfocitos/efectos de los fármacos , Estructura Molecular , Salicilatos , Timidina Quinasa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Estados Unidos
10.
Curr Issues Mol Biol ; 16: 23-54, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23969318

RESUMEN

Methods for the rapid detection and differentiation of the Burkholderia pseudomallei complex comprising B. pseudomallei, B. mallei, and B. thailandensis, have been the topic of recent research due to the high degree of phenotypic and genotypic similarities of these species. B. pseudomallei and B. mallei are recognized by the CDC as tier 1 select agents. The high mortality rates of glanders and melioidosis, their potential use as bioweapons, and their low infectious dose, necessitate the need for rapid and accurate detection methods. Although B. thailandensis is generally avirulent in mammals, this species displays very similar phenotypic characteristics to that of B. pseudomallei. Optimal identification of these species remains problematic, due to the difficulty in developing a sensitive, selective, and accurate assay. The development of PCR technologies has revolutionized diagnostic testing and these detection methods have become popular due to their speed, sensitivity, and accuracy. The purpose of this review is to provide a comprehensive overview and evaluation of the advancements in PCR-based detection and differentiation methodologies for the B. pseudomallei complex, and examine their potential uses in diagnostic and environmental testing.


Asunto(s)
Armas Biológicas , Burkholderia mallei/aislamiento & purificación , Burkholderia pseudomallei/aislamiento & purificación , Burkholderia/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , ARN Ribosómico 16S/genética , Animales , Técnicas de Tipificación Bacteriana , Burkholderia/genética , Burkholderia mallei/genética , Burkholderia pseudomallei/genética , Muermo/microbiología , Muermo/patología , Caballos , Humanos , Melioidosis/microbiología , Melioidosis/patología , Reacción en Cadena de la Polimerasa/normas , Polimorfismo de Nucleótido Simple , Sensibilidad y Especificidad
11.
PLoS One ; 18(11): e0293128, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033034

RESUMEN

Breast cancer is the most common cancer diagnosis worldwide accounting for 1 out of every 8 cancer diagnoses. The elevated expression of Thymidine Kinase 1 (TK1) is associated with more aggressive tumor grades, including breast cancer. Recent studies indicate that TK1 may be involved in cancer pathogenesis; however, its direct involvement in breast cancer has not been identified. Here, we evaluate potential pathogenic effects of elevated TK1 expression by comparing HCC 1806 to HCC 1806 TK1-knockdown cancer cells (L133). Transcriptomic profiles of HCC 1806 and L133 cells showed cell cycle progression, apoptosis, and invasion as potential pathogenic pathways affected by TK1 expression. Subsequent in-vitro studies confirmed differences between HCC 1806 and L133 cells in cell cycle phase progression, cell survival, and cell migration. Expression comparison of several factors involved in these pathogenic pathways between HCC 1806 and L133 cells identified p21 and AKT3 transcripts were significantly affected by TK1 expression. Creation of a protein-protein interaction map of TK1 and the pathogenic factors we evaluated predict that the majority of factors evaluated either directly or indirectly interact with TK1. Our findings argue that TK1 elevation directly increases HCC 1806 cell pathogenicity and is likely occurring by p21- and AKT3-mediated mechanisms to promote cell cycle arrest, cellular migration, and cellular survival.


Asunto(s)
Neoplasias de la Mama , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Supervivencia Celular/genética , Virulencia , División Celular , Timidina Quinasa/genética , Timidina Quinasa/metabolismo , Movimiento Celular/genética
12.
Cancers (Basel) ; 14(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35565306

RESUMEN

Cytokines are small molecular messengers that have profound effects on cancer development. Increasing evidence shows that cytokines are heavily involved in regulating both pro- and antitumor activities, such as immune activation and suppression, inflammation, cell damage, angiogenesis, cancer stem-cell-like cell maintenance, invasion, and metastasis. Cytokines are often required to drive these cancer-related processes and, therefore, represent an important research area for understanding cancer development and the potential identification of novel therapeutic targets. Interestingly, some cytokines are reported to be related to both pro- and anti-tumorigenicity, indicating that cytokines may play several complex roles relating to cancer pathogenesis. In this review, we discuss some major cancer-related processes and their relationship with several cytokines.

13.
PLoS One ; 17(3): e0264822, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35239730

RESUMEN

Thymidine Kinase 1 (TK1) is primarily known as a cancer biomarker with good prognostic capabilities for both hematological and solid malignancies. However, recent studies targeting TK1 at protein and mRNA levels have shown that TK1 may be useful as a therapeutic target. In order to examine the use of TK1 as a therapeutic target, it is necessary to develop therapeutics specific for it. Single domain antibodies (sdAbs), represent an exciting approach for the development of immunotherapeutics due to their cost-effective production and higher tumor penetration than conventional antibodies. In this study, we isolated sdAb fragments specific to human TK1 from a human sdAb library. A total of 400 sdAbs were screened through 5 rounds of selection by monoclonal phage ELISA. The most sensitive sdAb fragments were selected as candidates for preclinical testing. The sdAb fragments showed specificity for human TK1 in phage ELISA, Western blot analysis and had an estimated limit of detection of 3.9 ng/ml for the antibody fragments 4-H-TK1_A1 and 4-H-TK1_D1. The antibody fragments were successfully expressed and used for detection of membrane associated TK1 (mTK1) through flow cytometry on cancer cells [lung (~95%), colon (~87%), breast (~53%)] and healthy human mononuclear cells (MNC). The most sensitive antibody fragments, 4-H-TK1_A1 and 4-H-TK1_D1 were fused to an engineered IgG1 Fc fragment. When added to cancer cells expressing mTK1 co-cultured with human MNCs, the anti-TK1-sdAb-IgG1_A1 and D1 were able to elicit a significant antibody-dependent cell-mediated cytotoxicity (ADCC) response against lung cancer cells compared to isotype controls (P<0.0267 and P<0.0265, respectively). To our knowledge this is the first time that the isolation and evaluation of human anti-TK1 single domain antibodies using phage display technology has been reported. The antibody fragments isolated here may represent a valuable resource for the detection and the targeting of TK1 on tumor cells.


Asunto(s)
Neoplasias , Anticuerpos de Dominio Único , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G/genética , Neoplasias/terapia , Timidina Quinasa/genética
14.
Cell Biosci ; 10(1): 138, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33292474

RESUMEN

Proliferation markers, such as proliferating cell nuclear antigen (PCNA), Ki-67, and thymidine kinase 1 (TK1), have potential as diagnostic tools and as prognostic factors in assessing cancer treatment and disease progression. TK1 is involved in cellular proliferation through the recovery of the nucleotide thymidine in the DNA salvage pathway. TK1 upregulation has been found to be an early event in cancer development. In addition, serum levels of TK1 have been shown to be tied to cancer stage, so that higher levels of TK1 indicate a more serious prognosis. As a result of these findings and others, TK1 is not only a potentially viable biomarker for cancer recurrence, treatment monitoring, and survival, but is potentially more advantageous than current biomarkers. Compared to other proliferation markers, TK1 levels during S phase more accurately determine the rate of DNA synthesis in actively dividing tumors. Several reviews of TK1 elaborate on various assays that have been developed to measure levels in the serum of cancer patients in clinical settings. In this review, we include a brief history of important TK1 discoveries and findings, a comprehensive overview of TK1 regulation at DNA to protein levels, and recent findings that indicate TK1's potential role in cancer pathogenesis and its growing potential as a tumor biomarker and therapeutic target.

15.
Immunol Res ; 68(1): 63-70, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32096010

RESUMEN

With several different CAR T cell therapies under advanced phases of clinical trials, and the first FDA-approved CAR treatments in 2017 (Yescarta and Kymriah), CAR T cell therapy has become one of the most promising therapies for the treatment of certain types of cancer. This success has bred an opportunity to optimize the production of CAR T cells for easier patient access. CAR T cell therapy is a rather expensive and personalized process that requires expensive measures to collect cells from patients, engineer those cells, and re-infuse the cells into the patient with adequate quality controls at each phase. With this in mind, significant attempts at creating a "universal" CAR T cell are underway in order to create an "off-the-shelf" product that would reduce the expense and time required for traditional CAR T cell treatment. The primary obstacle facing this endeavor is avoiding graft-versus-host disease that accompanies allogeneic transplants between genetically dissimilar individuals. With the advent of CRISPR and TALEN technology, editing the genome of allogeneic cells has become very possible, and several groups have provided initial data analyzing the effects of CAR T cells that have been edited to avoid host rejection and avoid endogenous TCR alloreactivity. These engineered cells not only have to avoid GVHD but also have to retain their anti-tumor efficacy in vivo. Here, we expand on the recent efforts and strides that have been made in the design and testing of universal allogeneic CAR T cells.


Asunto(s)
Enfermedad Injerto contra Huésped/prevención & control , Inmunoterapia Adoptiva/métodos , Isoantígenos/metabolismo , Neoplasias/terapia , Linfocitos T/fisiología , Animales , Sistemas CRISPR-Cas , Ingeniería Genética , Humanos , Isoantígenos/genética , Isoantígenos/inmunología , Neoplasias/inmunología , Medicina de Precisión , Linfocitos T/trasplante , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Trasplante Homólogo
16.
Immunobiology ; 225(3): 151931, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32291109

RESUMEN

INTRODUCTION: The purpose of this study was to examine the effects of elevated Hypoxanthine Guanine Phosphoribosyltransferase (HPRT) on the immune response in the tumor microenvironment. METHODOLOGY: HPRT expression was evaluated in cancer patients and correlated with cytokine expression, survival, and immune cell infiltration. An HPRT knockdown cell line was created to evaluate HPRT impact on purine expression and subsequent purine treatment was administered to immune cells to determine their influence on cell activation. RESULTS: HPRT expression was negatively correlated with the general expression of both pro-inflammatory and anti-inflammatory cytokines. Additionally, HPRT expression was also negatively correlated with the infiltration of immune cell subsets: B-cells, CD4 + T cells, macrophages, neutrophils, and dendritic cells (p < 0.001) and CD8 + T-cells (p < 0.01). When HPRT was knocked down in a Raji cell line, the levels of adenosine were reduced significantly compared to the wild type. When examining the level of Ca2+ influx of Raji compared to the HPRT Raji knockdown cell, there was a significant decrease in calcium influx in the knockdown cells when compared to the wild type cells. This demonstrates that HPRT had a significant impact on overall cell activation and the ability of the cells to properly influx calcium needed for their activation. CONCLUSIONS: We conclude that purine levels significantly reduce immune cell activation in cancer and the upregulation of HPRT in malignant tissue is a contributing factors to the immunosuppressive microenvironment.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Hipoxantina Fosforribosiltransferasa/genética , Purinas/biosíntesis , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Biomarcadores , Línea Celular Tumoral , Citocinas/biosíntesis , Susceptibilidad a Enfermedades , Técnicas de Silenciamiento del Gen , Humanos , Hipoxantina Fosforribosiltransferasa/metabolismo , Inmunomodulación , Mediadores de Inflamación/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología
17.
Mol Cell Oncol ; 6(2): 1575691, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31131300

RESUMEN

HPRT is a housekeeping enzyme involved in recycling guanine and inosine in the purine salvage pathway. As a housekeeping gene, HPRT has been widely used as an endogenous control for molecular studies evaluating changes in gene expression. Yet, recent evidence has shown that HPRT exhibits high variability within malignant samples. We designed this study to determine whether this observed upregulation is consistently found, therefore rendering hprt an unsuitable normalization control in cancer. Utilizing protein and RNA-seq expression, we found that malignant and normal patient samples vary significantly both within the same tissue type and across organ sites. Upon staining for HPRT via immunohistochemistry, we found that expression is highly variable in malignant samples (Lung; 89.2-111.8, Breast; 66.7-98.3, Colon; 85.3-129.7, Prostate; 90.8-155.4, Pancreas; 74.1-132.1). Similarly, we observed high variability across cell lines via western blotting (p < 0.0001) which was further confirmed using RNA sequencing. Comparing normal and malignant patient samples, we observed consistent upregulation of HPRT expression within malignant samples relative to normal samples (p = 0.0001). These data indicate that HPRT is unsuitable as an endogenous control for cancer-related studies because its expression is highly variable and exceeds that of an appropriate control; therefore, we recommend its discontinued use as a normalization gene.

18.
J Virol Methods ; 153(1): 74-7, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18598719

RESUMEN

It is well documented in the scientific literature that ozone-oxygen mixtures inactivate microorganisms including bacteria, fungi and viruses (Hoff, J.C., 1986. Inactivation of microbial agents by chemical disinfectants. EPA 600 S2-86 067. Office of Water, U.S. Environmental Protection Agency, Washington, DC; Khadre, M.A., Yousef, A.E., Kim, J.-G., 2001. Microbiological aspects of ozone applications in food: a review. J. Food Sci. 66, 1242-1252). In the current study, delivery and absorption of precisely known concentrations of ozone (in liquid media) were used to inactivate virus infectivity. An ozone-oxygen delivery system capable of monitoring and recording ozone concentrations in real time was used to inactivate a series of enveloped and non-enveloped viruses including herpes simplex virus type-1 (HHV-1, strain McIntyre), vesicular stomatitis Indiana virus (VSIV), vaccinia virus (VACV, strain Elstree), adenovirus type-2 (HAdV-2), and the PR8 strain of influenza A virus (FLUAVA/PR/8/34/H1N1; FLUAV). The results of the study showed that ozone exposure reduced viral infectivity by lipid peroxidation and subsequent lipid envelope and protein shell damage. These data suggest that a wide range of virus types can be inactivated in an environment of known ozone exposure.


Asunto(s)
Desinfectantes/farmacología , Ozono/farmacología , Especies Reactivas de Oxígeno/farmacología , Virión/efectos de los fármacos , Inactivación de Virus , Adenoviridae/efectos de los fármacos , Adenoviridae/ultraestructura , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/ultraestructura , Microscopía Electrónica de Transmisión , Simplexvirus/efectos de los fármacos , Simplexvirus/ultraestructura , Virus Vaccinia/efectos de los fármacos , Virus Vaccinia/ultraestructura , Virus de la Estomatitis Vesicular Indiana/efectos de los fármacos , Virus de la Estomatitis Vesicular Indiana/ultraestructura , Ensayo de Placa Viral , Virión/ultraestructura
19.
J Exp Clin Cancer Res ; 37(1): 163, 2018 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-30031396

RESUMEN

Biomarkers are an integral part of cancer management due to their use in risk assessment, screening, differential diagnosis, prognosis, prediction of response to treatment, and monitoring progress of disease. Recently, with the advent of Chimeric Antigen Receptor (CAR) T cell therapy, a new category of targetable biomarkers has emerged. These biomarkers are associated with the surface of malignant cells and serve as targets for directing cytotoxic T cells. The first biomarker target used for CAR T cell therapy was CD19, a B cell marker expressed highly on malignant B cells. With the success of CD19, the last decade has shown an explosion of new targetable biomarkers on a range of human malignancies. These surface targets have made it possible to provide directed, specific therapy that reduces healthy tissue destruction and preserves the patient's immune system during treatment. As of May 2018, there are over 100 clinical trials underway that target over 25 different surface biomarkers in almost every human tissue. This expansion has led to not only promising results in terms of patient outcome, but has also led to an exponential growth in the investigation of new biomarkers that could potentially be utilized in CAR T cell therapy for treating patients. In this review, we discuss the biomarkers currently under investigation and point out several promising biomarkers in the preclinical stage of development that may be useful as targets.


Asunto(s)
Biomarcadores/química , Inmunoterapia Adoptiva/métodos , Linfocitos T Citotóxicos/metabolismo , Humanos
20.
Med Oncol ; 35(6): 89, 2018 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-29730818

RESUMEN

Hypoxanthine guanine phosphoribosyltransferase (HPRT) is a common salvage housekeeping gene with a historically important role in cancer as a mutational biomarker. As an established and well-known human reporter gene for the evaluation of mutational frequency corresponding to cancer development, HPRT is most commonly used to evaluate cancer risk within individuals and determine potential carcinogens. In addition to its use as a reporter gene, HPRT also has important functionality in the body in relation to purine regulation as demonstrated by Lesch-Nyhan patients whose lack of functional HPRT leads to significant purine overproduction and further neural complications. This regulatory role, in addition to an established connection between other salvage enzymes and cancer development, points to HPRT as an emerging influence in cancer. Recent work has shown that not only is the enzyme upregulated within malignant tumors, it also has significant surface localization within some cancer cells. With this is mind, HPRT has the potential to become a significant biomarker not only for the characterization of cancer, but also for its potential treatment.


Asunto(s)
Hipoxantina Fosforribosiltransferasa/metabolismo , Neoplasias/enzimología , Animales , Humanos , Hipoxantina Fosforribosiltransferasa/química , Hipoxantina Fosforribosiltransferasa/genética , Modelos Moleculares , Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA