Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
PLoS Comput Biol ; 15(11): e1007337, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31682597

RESUMEN

Gene expression governs cell fate, and is regulated via a complex interplay of transcription factors and molecules that change chromatin structure. Advances in sequencing-based assays have enabled investigation of these processes genome-wide, leading to large datasets that combine information on the dynamics of gene expression, transcription factor binding and chromatin structure as cells differentiate. While numerous studies focus on the effects of these features on broader gene regulation, less work has been done on the mechanisms of gene-specific transcriptional control. In this study, we have focussed on the latter by integrating gene expression data for the in vitro differentiation of murine ES cells to macrophages and cardiomyocytes, with dynamic data on chromatin structure, epigenetics and transcription factor binding. Combining a novel strategy to identify communities of related control elements with a penalized regression approach, we developed individual models to identify the potential control elements predictive of the expression of each gene. Our models were compared to an existing method and evaluated using the existing literature and new experimental data from embryonic stem cell differentiation reporter assays. Our method is able to identify transcriptional control elements in a gene specific manner that reflect known regulatory relationships and to generate useful hypotheses for further testing.


Asunto(s)
Diferenciación Celular/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Elementos Reguladores de la Transcripción/genética , Animales , Diferenciación Celular/fisiología , Cromatina/metabolismo , Bases de Datos Genéticas , Epigénesis Genética , Epigenómica , Regulación de la Expresión Génica/genética , Genoma , Macrófagos/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Miocitos Cardíacos/metabolismo , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo
2.
Development ; 143(23): 4324-4340, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27802171

RESUMEN

The transmission of extracellular signals into the nucleus involves inducible transcription factors, but how different signalling pathways act in a cell type-specific fashion is poorly understood. Here, we studied the regulatory role of the AP-1 transcription factor family in blood development using embryonic stem cell differentiation coupled with genome-wide transcription factor binding and gene expression analyses. AP-1 factors respond to MAP kinase signalling and comprise dimers of FOS, ATF and JUN proteins. To examine genes regulated by AP-1 and to examine how it interacts with other inducible transcription factors, we abrogated its global DNA-binding activity using a dominant-negative FOS peptide. We show that FOS and JUN bind to and activate a specific set of vascular genes and that AP-1 inhibition shifts the balance between smooth muscle and hematopoietic differentiation towards blood. Furthermore, AP-1 is required for de novo binding of TEAD4, a transcription factor connected to Hippo signalling. Our bottom-up approach demonstrates that AP-1- and TEAD4-associated cis-regulatory elements form hubs for multiple signalling-responsive transcription factors and define the cistrome that regulates vascular and hematopoietic development by extrinsic signals.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Proteínas Musculares/metabolismo , Músculo Liso Vascular/citología , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción Activadores/metabolismo , Animales , Sitios de Unión/genética , Línea Celular , Proteínas de Unión al ADN/genética , Expresión Génica/genética , Perfilación de la Expresión Génica , Ratones , Músculo Liso Vascular/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción de Dominio TEA , Factor de Transcripción AP-1/antagonistas & inhibidores
3.
Blood Adv ; 7(24): 7525-7538, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37639313

RESUMEN

Leukemia stem cells (LSCs) share numerous features with healthy hematopoietic stem cells (HSCs). G-protein coupled receptor family C group 5 member C (GPRC5C) is a regulator of HSC dormancy. However, GPRC5C functionality in acute myeloid leukemia (AML) is yet to be determined. Within patient AML cohorts, high GPRC5C levels correlated with poorer survival. Ectopic Gprc5c expression increased AML aggression through the activation of NF-κB, which resulted in an altered metabolic state with increased levels of intracellular branched-chain amino acids (BCAAs). This onco-metabolic profile was reversed upon loss of Gprc5c, which also abrogated the leukemia-initiating potential. Targeting the BCAA transporter SLC7A5 with JPH203 inhibited oxidative phosphorylation and elicited strong antileukemia effects, specifically in mouse and patient AML samples while sparing healthy bone marrow cells. This antileukemia effect was strengthened in the presence of venetoclax and azacitidine. Our results indicate that the GPRC5C-NF-κB-SLC7A5-BCAAs axis is a therapeutic target that can compromise leukemia stem cell function in AML.


Asunto(s)
Aminoácidos de Cadena Ramificada , Leucemia Mieloide Aguda , Receptores Acoplados a Proteínas G , Animales , Humanos , Ratones , Aminoácidos de Cadena Ramificada/uso terapéutico , Transportador de Aminoácidos Neutros Grandes 1/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , FN-kappa B/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
4.
Nat Commun ; 14(1): 6947, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935654

RESUMEN

Disease-causing mutations in genes encoding transcription factors (TFs) can affect TF interactions with their cognate DNA-binding motifs. Whether and how TF mutations impact upon the binding to TF composite elements (CE) and the interaction with other TFs is unclear. Here, we report a distinct mechanism of TF alteration in human lymphomas with perturbed B cell identity, in particular classic Hodgkin lymphoma. It is caused by a recurrent somatic missense mutation c.295 T > C (p.Cys99Arg; p.C99R) targeting the center of the DNA-binding domain of Interferon Regulatory Factor 4 (IRF4), a key TF in immune cells. IRF4-C99R fundamentally alters IRF4 DNA-binding, with loss-of-binding to canonical IRF motifs and neomorphic gain-of-binding to canonical and non-canonical IRF CEs. IRF4-C99R thoroughly modifies IRF4 function by blocking IRF4-dependent plasma cell induction, and up-regulates disease-specific genes in a non-canonical Activator Protein-1 (AP-1)-IRF-CE (AICE)-dependent manner. Our data explain how a single mutation causes a complex switch of TF specificity and gene regulation and open the perspective to specifically block the neomorphic DNA-binding activities of a mutant TF.


Asunto(s)
Factores Reguladores del Interferón , Linfoma , Humanos , Linfocitos B/metabolismo , ADN , Regulación de la Expresión Génica , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Linfoma/genética
5.
Nat Metab ; 4(7): 856-866, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35864246

RESUMEN

Successful elimination of bacteria in phagocytes occurs in the phago-lysosomal system, but also depends on mitochondrial pathways. Yet, how these two organelle systems communicate is largely unknown. Here we identify the lysosomal biogenesis factor transcription factor EB (TFEB) as regulator for phago-lysosome-mitochondria crosstalk in macrophages. By combining cellular imaging and metabolic profiling, we find that TFEB activation, in response to bacterial stimuli, promotes the transcription of aconitate decarboxylase (Acod1, Irg1) and synthesis of its product itaconate, a mitochondrial metabolite with antimicrobial activity. Activation of the TFEB-Irg1-itaconate signalling axis reduces the survival of the intravacuolar pathogen Salmonella enterica serovar Typhimurium. TFEB-driven itaconate is subsequently transferred via the Irg1-Rab32-BLOC3 system into the Salmonella-containing vacuole, thereby exposing the pathogen to elevated itaconate levels. By activating itaconate production, TFEB selectively restricts proliferating Salmonella, a bacterial subpopulation that normally escapes macrophage control, which contrasts TFEB's role in autophagy-mediated pathogen degradation. Together, our data define a TFEB-driven metabolic pathway between phago-lysosomes and mitochondria that restrains Salmonella Typhimurium burden in macrophages in vitro and in vivo.


Asunto(s)
Lisosomas , Succinatos , Autofagia/fisiología , Lisosomas/metabolismo , Macrófagos/metabolismo , Succinatos/metabolismo , Succinatos/farmacología
6.
Nat Cell Biol ; 24(7): 1038-1048, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35725769

RESUMEN

Bone marrow haematopoietic stem cells (HSCs) are vital for lifelong maintenance of healthy haematopoiesis. In inbred mice housed in gnotobiotic facilities, the top of the haematopoietic hierarchy is occupied by dormant HSCs, which reversibly exit quiescence during stress. Whether HSC dormancy exists in humans remains debatable. Here, using single-cell RNA sequencing, we show a continuous landscape of highly purified human bone marrow HSCs displaying varying degrees of dormancy. We identify the orphan receptor GPRC5C, which enriches for dormant human HSCs. GPRC5C is also essential for HSC function, as demonstrated by genetic loss- and gain-of-function analyses. Through structural modelling and biochemical assays, we show that hyaluronic acid, a bone marrow extracellular matrix component, preserves dormancy through GPRC5C. We identify the hyaluronic acid-GPRC5C signalling axis controlling the state of dormancy in mouse and human HSCs.


Asunto(s)
Células Madre Hematopoyéticas , Ácido Hialurónico , Animales , Médula Ósea , Hematopoyesis , Humanos , Ratones , Transducción de Señal
7.
Cell Stem Cell ; 29(1): 131-148.e10, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34706256

RESUMEN

Hematopoietic stem cells (HSCs) rely on complex regulatory networks to preserve stemness. Due to the scarcity of HSCs, technical challenges have limited our insights into the interplay between metabolites, transcription, and the epigenome. In this study, we generated low-input metabolomics, transcriptomics, chromatin accessibility, and chromatin immunoprecipitation data, revealing distinct metabolic hubs that are enriched in HSCs and their downstream multipotent progenitors. Mechanistically, we uncover a non-classical retinoic acid (RA) signaling axis that regulates HSC function. We show that HSCs rely on Cyp26b1, an enzyme conventionally considered to limit RA effects in the cell. In contrast to the traditional view, we demonstrate that Cyp26b1 is indispensable for production of the active metabolite 4-oxo-RA. Further, RA receptor beta (Rarb) is required for complete transmission of 4-oxo-RA-mediated signaling to maintain stem cells. Our findings emphasize that a single metabolite controls stem cell fate by instructing epigenetic and transcriptional attributes.


Asunto(s)
Células Madre Hematopoyéticas , Tretinoina , Diferenciación Celular , Ácido Retinoico 4-Hidroxilasa/genética , Transducción de Señal , Tretinoina/farmacología
8.
Nat Cell Biol ; 23(7): 704-717, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34253898

RESUMEN

Haematopoietic stem cells (HSCs) are normally quiescent, but have evolved mechanisms to respond to stress. Here, we evaluate haematopoietic regeneration induced by chemotherapy. We detect robust chromatin reorganization followed by increased transcription of transposable elements (TEs) during early recovery. TE transcripts bind to and activate the innate immune receptor melanoma differentiation-associated protein 5 (MDA5) that generates an inflammatory response that is necessary for HSCs to exit quiescence. HSCs that lack MDA5 exhibit an impaired inflammatory response after chemotherapy and retain their quiescence, with consequent better long-term repopulation capacity. We show that the overexpression of ERV and LINE superfamily TE copies in wild-type HSCs, but not in Mda5-/- HSCs, results in their cycling. By contrast, after knockdown of LINE1 family copies, HSCs retain their quiescence. Our results show that TE transcripts act as ligands that activate MDA5 during haematopoietic regeneration, thereby enabling HSCs to mount an inflammatory response necessary for their exit from quiescence.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Elementos Transponibles de ADN , Hematopoyesis/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Helicasa Inducida por Interferón IFIH1/metabolismo , Agonistas Mieloablativos/farmacología , Animales , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Retrovirus Endógenos/genética , Activación Enzimática , Células HEK293 , Células Madre Hematopoyéticas/enzimología , Humanos , Helicasa Inducida por Interferón IFIH1/genética , Ligandos , Elementos de Nucleótido Esparcido Largo , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
9.
Cytotherapy ; 12(7): 899-908, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20210674

RESUMEN

BACKGROUND: DNA and chromatin modifications are critical mediators in the establishment and maintenance of cell type-specific gene expression patterns that constitute cellular identities. One type of modification, the acetylation and deacetylation of histones, occurs reversibly on lysine ε-NH3(+) groups of core histones via histone acetyl transferases (HAT) and histone deacetylases (HDAC). Hyperacetylated histones are associated with active chromatin domains, whereas hypoacetylated histones are enriched in non-transcribed loci. METHODS: We analyzed global histone H4 acetylation and HDAC activity levels in mature lineage marker-positive (Lin(+)) and progenitor lineage marker-negative (Lin⁻) hematopoietic cells from murine bone marrow (BM). In addition, we studied the effects of HDAC inhibition on hematopoietic progenitor/stem cell (HPSC) frequencies, cell survival, differentiation and HoxB4 dependence. RESULTS: We observed that Lin⁻ and Lin(+) cells do not differ in global histone H4 acetylation but in HDAC activity levels. Further, we saw that augmented histone acetylation achieved by transient Trichostatin A (TSA) treatment increased the frequency of cells with HPSC immunophenotype and function in the heterogeneous pool of BM cells. Induction of histone hyperacetylation in differentiated BM cells was detrimental, as evidenced by preferential death of mature BM cells upon HDAC inhibition. Finally, TSA treatment of BM cells from HoxB4(-/-) mice revealed that the HDAC inhibitor-mediated increase in HPSC frequencies was independent of HoxB4. CONCLUSIONS: Overall, these data indicate the potential of chromatin modifications for the regulation of HPSC. Chromatin-modifying agents may provide potential strategies for ex vivo expansion of HPSC.


Asunto(s)
Células de la Médula Ósea/metabolismo , Células Madre Hematopoyéticas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/farmacología , Acetilación/efectos de los fármacos , Animales , Antígenos de Diferenciación/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/patología , Linaje de la Célula , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Hematopoyesis/efectos de los fármacos , Hematopoyesis/genética , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/patología , Histona Desacetilasas/genética , Histonas/metabolismo , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción/genética
10.
Cells Tissues Organs ; 191(3): 167-74, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19776550

RESUMEN

We report flow cytometric protocols that quantitatively display the levels of different histone modifications on the single cell level. This method allows the rapid and simultaneous analysis of the global levels of chromatin marks in combination with other flow cytometric features. We show that chromatin flow cytometry identifies changes in epigenetic marks, such as histone acetylation and methylation, in drug-treated and differentiated mouse embryonic stem cell populations.


Asunto(s)
Cromatina/genética , Células Madre Embrionarias/fisiología , Epigénesis Genética , Citometría de Flujo/métodos , Acetilación/efectos de los fármacos , Animales , Azepinas/farmacología , Diferenciación Celular , Células Cultivadas , Cromatina/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Histonas/metabolismo , Ácidos Hidroxámicos/farmacología , Metilación/efectos de los fármacos , Ratones , Quinazolinas/farmacología
11.
Nat Struct Mol Biol ; 26(5): 361-371, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31061526

RESUMEN

Histone lysine methylation is generally performed by SET domain methyltransferases and regulates chromatin structure and gene expression. Here, we identify human C21orf127 (HEMK2, N6AMT1, PrmC), a member of the seven-ß-strand family of putative methyltransferases, as a novel histone lysine methyltransferase. C21orf127 functions as an obligate heterodimer with TRMT112, writing the methylation mark on lysine 12 of histone H4 (H4K12) in vitro and in vivo. We characterized H4K12 recognition by solving the crystal structure of human C21orf127-TRMT112, hereafter termed 'lysine methyltransferase 9' (KMT9), in complex with S-adenosyl-homocysteine and H4K12me1 peptide. Additional analyses revealed enrichment for KMT9 and H4K12me1 at the promoters of numerous genes encoding cell cycle regulators and control of cell cycle progression by KMT9. Importantly, KMT9 depletion severely affects the proliferation of androgen receptor-dependent, as well as that of castration- and enzalutamide-resistant prostate cancer cells and xenograft tumors. Our data link H4K12 methylation with KMT9-dependent regulation of androgen-independent prostate tumor cell proliferation, thereby providing a promising paradigm for the treatment of castration-resistant prostate cancer.


Asunto(s)
Proliferación Celular/fisiología , Histonas/metabolismo , Lisina/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Línea Celular Tumoral , Dimerización , Histonas/química , Humanos , Masculino , Metilación , Metiltransferasas/química , Metiltransferasas/metabolismo , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/química , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/fisiología
12.
Sci Rep ; 8(1): 10410, 2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-29991720

RESUMEN

Haematopoietic cells arise from endothelial cells within the dorsal aorta of the embryo via a process called the endothelial-haematopoietic transition (EHT). This process crucially depends on the transcription factor RUNX1 which rapidly activates the expression of genes essential for haematopoietic development. Using an inducible version of RUNX1 in a mouse embryonic stem cell differentiation model we showed that prior to the EHT, haematopoietic genes are primed by the binding of the transcription factor FLI1. Once expressed, RUNX1 relocates FLI1 towards its binding sites. However, the nature of the transcription factor assemblies recruited by RUNX1 to reshape the chromatin landscape and initiate mRNA synthesis are unclear. Here, we performed genome-wide analyses of RUNX1-dependent binding of factors associated with transcription elongation to address this question. We demonstrate that RUNX1 induction moves FLI1 from distal ETS/GATA sites to RUNX1/ETS sites and recruits the basal transcription factors CDK9, BRD4, the Mediator complex and the looping factor LDB1. Our study explains how the expression of a single transcription factor can drive rapid and replication independent transitions in cellular shape which are widely observed in development and disease.


Asunto(s)
Diferenciación Celular/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Proteínas de Unión al ADN/genética , Proteínas con Dominio LIM/genética , Células Madre Embrionarias de Ratones/citología , Animales , Cromatina/genética , Quinasa 9 Dependiente de la Ciclina/genética , Regulación del Desarrollo de la Expresión Génica , Estudio de Asociación del Genoma Completo , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Nucleares/genética , Proteína Proto-Oncogénica c-fli-1/genética , Factores de Transcripción/genética
13.
FEBS Lett ; 590(22): 4105-4115, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27497427

RESUMEN

Although the body plan of individuals is encoded in their genomes, each cell type expresses a different gene expression programme and therefore has access to only a subset of this information. Alterations to gene expression programmes are the underlying basis for the differentiation of multiple cell types and are driven by tissue-specific transcription factors (TFs) that interact with the epigenetic regulatory machinery to programme the chromatin landscape into transcriptionally active and inactive states. The haematopoietic system has long served as a paradigm for studying the molecular principles that regulate gene expression in development. In this review article, we summarize the current knowledge on the mechanism of action of TFs regulating haematopoietic stem cell specification and differentiation, and place this information into the context of general principles governing development.


Asunto(s)
Diferenciación Celular/genética , Cromatina/genética , Células Madre Hematopoyéticas , Factores de Transcripción/genética , Linaje de la Célula/genética , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Humanos
14.
Dev Cell ; 36(5): 572-87, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26923725

RESUMEN

Metazoan development involves the successive activation and silencing of specific gene expression programs and is driven by tissue-specific transcription factors programming the chromatin landscape. To understand how this process executes an entire developmental pathway, we generated global gene expression, chromatin accessibility, histone modification, and transcription factor binding data from purified embryonic stem cell-derived cells representing six sequential stages of hematopoietic specification and differentiation. Our data reveal the nature of regulatory elements driving differential gene expression and inform how transcription factor binding impacts on promoter activity. We present a dynamic core regulatory network model for hematopoietic specification and demonstrate its utility for the design of reprogramming experiments. Functional studies motivated by our genome-wide data uncovered a stage-specific role for TEAD/YAP factors in mammalian hematopoietic specification. Our study presents a powerful resource for studying hematopoiesis and demonstrates how such data advance our understanding of mammalian development.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Animales , Linaje de la Célula/fisiología , Proteínas de Homeodominio/metabolismo , Ratones , Unión Proteica/genética , Factores de Transcripción/metabolismo
16.
Int J Hematol ; 101(4): 319-29, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25749719

RESUMEN

The differentiation from multipotent hematopoietic stem cells (HSC) to mature and functional blood cells requires the finely tuned regulation of gene expression at each stage of development. Specific transcription factors play a key role in this process as they modulate the expression of their target genes in an exquisitely lineage-specific manner. A large number of important transcriptional regulators have been identified which establish and maintain specific gene expression patterns during hematopoietic development. Hematopoiesis is therefore a paradigm for investigating how transcription factors function in mammalian cells, thanks also to the evolution of genome-wide and the next-generation sequencing technologies. In this review, we focus on the current knowledge of the biological and functional properties of the hematopoietic master regulator RUNX1 (also known as AML1, CBFA2, PEBP2aB) transcription factor and its main downstream target PU.1. We will outline their relationship in determining the fate of the myeloid lineage during normal stem cell development and under conditions when hematopoietic development is subverted by leukemic transformation.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Hematopoyesis , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Activación Transcripcional , Animales , Linfocitos B/metabolismo , Linfocitos B/patología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/análisis , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Epigénesis Genética , Regulación Leucémica de la Expresión Génica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Proteínas Proto-Oncogénicas/análisis , Proteínas Proto-Oncogénicas/genética , Transducción de Señal , Linfocitos T/metabolismo , Linfocitos T/patología , Transactivadores/análisis , Transactivadores/genética
17.
Stem Cell Rev Rep ; 11(1): 50-61, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25134795

RESUMEN

Eed (embryonic ectoderm development) is a core component of the Polycomb Repressive Complex 2 (PRC2) which catalyzes the methylation of histone H3 lysine 27 (H3K27). Trimethylated H3K27 (H3K27me3) can act as a signal for PRC1 recruitment in the process of gene silencing and chromatin condensation. Previous studies with Eed KO ESCs revealed a failure to down-regulate a limited list of pluripotency factors in differentiating ESCs. Our aim was to analyze the consequences of Eed KO for ESC differentiation. To this end we first analyzed ESC differentiation in the absence of Eed and employed in silico data to assess pluripotency gene expression and H3K27me3 patterns. We linked these data to expression analyses of wildtype and Eed KO ESCs. We observed that in wildtype ESCs a subset of pluripotency genes including Oct4, Nanog, Sox2 and Oct4 target genes progressively gain H3K27me3 during differentiation. These genes remain expressed in differentiating Eed KO ESCs. This suggests that the deregulation of a limited set of pluripotency factors impedes ESC differentiation. Global analyses of H3K27me3 and Oct4 ChIP-seq data indicate that in ESCs the binding of Oct4 to promoter regions is not a general predictor for PRC2-mediated silencing during differentiation. However, motif analyses suggest a binding of Oct4 together with Sox2 and Nanog at promoters of genes that are PRC2-dependently silenced during differentiation. In summary, our data further characterize Eed function in ESCs by showing that Eed/PRC2 is essential for the onset of ESC differentiation.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Complejo Represivo Polycomb 2/genética , Interferencia de ARN , Animales , Western Blotting , Línea Celular , Células Cultivadas , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Células Madre Embrionarias/citología , Histonas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Lisina/metabolismo , Metilación , Ratones Noqueados , Microscopía Fluorescente , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
18.
Sci Rep ; 5: 12319, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26198814

RESUMEN

Cord blood hematopoietic stem cells (CB-HSCs) are an outstanding source for transplantation approaches. However, the amount of cells per donor is limited and culture expansion of CB-HSCs is accompanied by a loss of engraftment potential. In order to analyze the molecular mechanisms leading to this impaired potential we profiled global and local epigenotypes during the expansion of human CB hematopoietic stem and progenitor cells (HPSCs). Human CB-derived CD34+ cells were cultured in serum-free medium together with SCF, TPO, FGF, with or without Igfbp2 and Angptl5 (STF/STFIA cocktails). As compared to the STF cocktail, the STFIA cocktail maintains in vivo repopulation capacity of cultured CD34+ cells. Upon expansion, CD34+ cells genome-wide remodel their epigenotype and depending on the cytokine cocktail, cells show different H3K4me3 and H3K27me3 levels. Expanding cells without Igfbp2 and Angptl5 leads to higher global H3K27me3 levels. ChIPseq analyses reveal a cytokine cocktail-dependent redistribution of H3K27me3 profiles. Inhibition of the PRC2 component EZH2 counteracts the culture-associated loss of NOD scid gamma (NSG) engraftment potential. Collectively, our data reveal chromatin dynamics that underlie the culture-associated loss of engraftment potential. We identify PRC2 component EZH2 as being involved in the loss of engraftment potential during the in vitro expansion of HPSCs.


Asunto(s)
Sangre Fetal/citología , Supervivencia de Injerto/fisiología , Células Madre Hematopoyéticas/citología , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Complejo Represivo Polycomb 2/metabolismo , Animales , Antígenos CD34/metabolismo , Células Cultivadas , Cromatina/metabolismo , Femenino , Sangre Fetal/metabolismo , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones , Ratones SCID , Trasplante Heterólogo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA