Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Cell Mol Med ; 19(2): 340-50, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25331547

RESUMEN

We previously established a role for HSP27 as a predictive marker for therapeutic response towards gemcitabine in pancreatic cancer. Here, we investigate the underlying mechanisms of HSP27-mediated gemcitabine sensitivity. Utilizing a pancreatic cancer cell model with stable HSP27 overexpression, cell cycle arrest and apoptosis induction were analysed by flow cytometry, nuclear staining, immunoblotting and mitochondrial staining. Drug sensitivity studies were performed by proliferation assays. Hyperthermia was simulated using mild heat shock at 41.8°C. Upon gemcitabine treatment, HSP27-overexpressing cells displayed an early S-phase arrest subsequently followed by a strongly increased sub-G1 fraction. Apoptosis was characterized by PARP-, CASPASE 3-, CASPASE 8-, CASPASE 9- and BIM- activation along with a mitochondrial membrane potential loss. It was reversible through chemical caspase inhibition. Importantly, gemcitabine sensitivity and PARP cleavage were also elicited by heat shock-induced HSP27 overexpression, although to a smaller extent, in a panel of pancreatic cancer cell lines. Finally, HSP27-overexpressing pancreatic cancer cells displayed an increased sensitivity also towards death receptor-targeting agents, suggesting another pro-apoptotic role of HSP27 along the extrinsic apoptosis pathway. Taken together, in contrast to the well-established anti-apoptotic properties of HSP27 in cancer, our study reveals novel pro-apoptotic functions of HSP27-mediated through both the intrinsic and the extrinsic apoptotic pathways-at least in pancreatic cancer cells. HSP27 could represent a predictive marker of therapeutic response towards specific drug classes in pancreatic cancer and provides a novel molecular rationale for current clinical trials applying the combination of gemcitabine with regional hyperthermia in pancreatic cancer patients.


Asunto(s)
Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Desoxicitidina/análogos & derivados , Proteínas de Choque Térmico HSP27/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Fase S/efectos de los fármacos , Apoptosis/genética , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Desoxicitidina/farmacología , Proteínas de Choque Térmico , Humanos , Chaperonas Moleculares , Páncreas/efectos de los fármacos , Neoplasias Pancreáticas/genética , Fase S/genética , Gemcitabina
2.
Lab Invest ; 93(3): 322-33, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23381627

RESUMEN

P38/Mk2 (mitogen-activated protein kinase (MAPK)-activated protein kinase-2, also known as MAKAP kinase-2) is a member of the mitogen-activated protein kinases (MAPKs) family, and participates in inflammatory responses directly or indirectly. WIN55, 212-2 (WIN55) is a synthetic non-selective agonist of cannabinoid (CB) receptors with remarkable anti-inflammatory properties. This study was to explore the roles of WIN55 and p38/Mk2 signaling pathway in dextran sodium sulfate (DSS)-induced mouse colitis and ascertain their anti-inflammatory mechanisms. Colitis was induced in C57BL Mk2 gene homozygous deletion (Mk2-/-) and wild-type mice by replacing the drinking water with 4% DSS solution for 7 days. DSS-treated mice developed bloody stool, weight loss, and eye-visible multiple bleeding ulcers on colon mucosa. The mRNA expressions levels of TNF-α and IL-6, as well as the protein levels of p38 and its phosphorylated form (p-p38), were upregulated in the colon. The plasma levels of TNF-α, IL-6, cytokine-induced neutrophil chemoattractant-1 (CINC-1), monocyte chemoattractant protein-1 (MCP-1), and lung myeloperoxidase (MPO) activities were raised; however, all these changes were less severe in Mk2-/- mice. After WIN55 intervention, the Mk2-/- mice recovered faster and better from the induced colitis than their wild-type counterparts. The results indicate that the Mk2 homozygous deletion in mice impedes the induction of experimental colitis by DSS, confirming the notion that p38/Mk2 is involved in this inflammatory response. WIN55 protects mice against DSS-induced colitis, in particular when the p38/Mk2 pathway is obstructed, implying that the activation of CB system, together with blocking of p38/Mk2 pathway, serves as a potential drug target for colitis treatment.


Asunto(s)
Antiinflamatorios/farmacología , Benzoxazinas/farmacología , Colitis/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intracelular/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Morfolinas/farmacología , Naftalenos/farmacología , Proteínas Serina-Treonina Quinasas/genética , Análisis de Varianza , Animales , Quimiocina CCL2/sangre , Quimiocina CXCL1/sangre , Colitis/inducido químicamente , Colitis/patología , Cartilla de ADN/genética , Sulfato de Dextran/toxicidad , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Interleucina-6/sangre , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Peroxidasa/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Necrosis Tumoral alfa/sangre
3.
J Cell Mol Med ; 16(8): 1776-91, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22004109

RESUMEN

A role of heat shock protein 27 (HSP27) as a potential biomarker has been reported in various tumour entities, but comprehensive studies in pancreatic cancer are lacking. Applying tissue microarray (TMA) analysis, we correlated HSP27 protein expression status with clinicopathologic parameters in pancreatic ductal adenocarcinoma specimens from 86 patients. Complementary, we established HSP27 overexpression and RNA-interference models to assess the impact of HSP27 on chemo- and radiosensitivity directly in pancreatic cancer cells. In the TMA study, HSP27 expression was found in 49% of tumour samples. Applying univariate analyses, a significant correlation was found between HSP27 expression and survival. In the multivariate Cox-regression model, HSP27 expression emerged as an independent prognostic factor. HSP27 expression also correlated inversely with nuclear p53 accumulation, indicating either protein interactions between HSP27 and p53 or TP53 mutation-dependent HSP27-regulation in pancreatic cancer. In the sensitivity studies, HSP27 overexpression rendered HSP27 low-expressing PL5 pancreatic cancer cells more susceptible towards treatment with gemcitabine. Vice versa, HSP27 protein depletion in HSP27 high-expressing AsPC-1 cells caused increased gemcitabine resistance. Importantly, HSP27 expression was inducible in pancreatic cancer cell lines as well as primary cells. Taken together, our study suggests a role for HSP27 as a prognostic and predictive marker in pancreatic cancer. Assessment of HSP27 expression could thus facilitate the identification of specific patient subpopulations that might benefit from individualized treatment options. Additional studies need to clarify whether modulation of HSP27 expression could represent an attractive concept to support the incorporation of hyperthermia in clinical treatment protocols for pancreatic cancer.


Asunto(s)
Adenocarcinoma/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapéutico , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Proteínas de Choque Térmico , Respuesta al Choque Térmico/efectos de los fármacos , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Chaperonas Moleculares , Análisis Multivariante , Páncreas/metabolismo , Páncreas/patología , Pronóstico , Análisis de Matrices Tisulares , Gemcitabina
4.
Mol Cancer ; 9: 127, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20509860

RESUMEN

BACKGROUND: Inactivation of the Fanconi anemia (FA) pathway through defects in one of 13 FA genes occurs at low frequency in various solid cancer entities among the general population. As FA pathway inactivation confers a distinct hypersensitivity towards DNA interstrand-crosslinking (ICL)-agents, FA defects represent rational targets for individualized therapeutic strategies. Except for pancreatic cancer, however, the prevalence of FA defects in gastrointestinal (GI) tumors has not yet been systematically explored. RESULTS: A panel of GI cancer cell lines was screened for FA pathway inactivation applying FANCD2 monoubiquitination and FANCD2/RAD51 nuclear focus formation and a newly identified FA pathway-deficient cell line was functionally characterized. The hepatocellular carcinoma (HCC) line HuH-7 was defective in FANCD2 monoubiquitination and FANCD2 nuclear focus formation but proficient in RAD51 focus formation. Gene complementation studies revealed that this proximal FA pathway inactivation was attributable to defective FANCC function in HuH-7 cells. Accordingly, a homozygous inactivating FANCC nonsense mutation (c.553C > T, p.R185X) was identified in HuH-7, resulting in partial transcriptional skipping of exon 6 and leading to the classic cellular FA hypersensitivity phenotype; HuH-7 cells exhibited a strongly reduced proliferation rate and a pronounced G2 cell cycle arrest at distinctly lower concentrations of ICL-agents than a panel of non-isogenic, FA pathway-proficient HCC cell lines. Upon retroviral transduction of HuH-7 cells with FANCC cDNA, FA pathway functions were restored and ICL-hypersensitivity abrogated. Analyses of 18 surgical HCC specimens yielded no further examples for genetic or epigenetic inactivation of FANCC, FANCF, or FANCG in HCC, suggesting a low prevalence of proximal FA pathway inactivation in this tumor type. CONCLUSIONS: As the majority of HCC are chemoresistant, assessment of FA pathway function in HCC could identify small subpopulations of patients expected to predictably benefit from individualized treatment protocols using ICL-agents.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular/genética , Resistencia a Antineoplásicos/genética , Proteína del Grupo de Complementación C de la Anemia de Fanconi/genética , Neoplasias Hepáticas/genética , Línea Celular Tumoral , Expresión Génica , Perfilación de la Expresión Génica , Silenciador del Gen , Humanos , Immunoblotting , ARN Mensajero/análisis
5.
Am J Physiol Gastrointest Liver Physiol ; 297(5): G981-9, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20501446

RESUMEN

The objective of this study was to investigate the role of MAPKAP kinase 2 (MK2) and heat shock protein (HSP) HSP60 in the pathogenesis of a new model of severe acute pancreatitis (AP). MK2 plays a significant role in the regulation of cytokines. It has been shown that induction and expression of several HSPs can protect against experimental pancreatitis. Interplay between both systems seems of high interest. Mice with a homozygous deletion of the MK2 gene were used. Severe AP was induced by combined intraperitoneal injections of cerulein with lipopolysaccharide (LPS). Severity of AP was assessed by biochemical markers and histology. The serum IL-6 and lung myeloperoxidase (MPO) levels were determined for assessing the extent of systemic inflammatory response. Expression of HSP25, HSP60, HSP70, and HSP90 was analyzed by Western blotting. Repeated injections of cerulein alone or cerulein plus LPS (Cer+LPS) resulted in local inflammatory responses in the pancreas and corresponding systemic inflammatory changes with pronounced severity in the Cer+LPS group. Compared with the C57Bl wild-type mice, the MK2-/- mice presented with significant milder pancreatitis and attenuated responses of serum amylase and trypsinogen activity. Furthermore, serum IL-6 was decreased as well as lung MPO activity. Injection of LPS alone displayed neither pancreatic inflammatory responses nor alterations of pancreatic enzyme activities but evidently elevated serum IL-6 levels and increased lung MPO activity. In contrast hereto, in the MK2-/- mice, these changes were much milder. Increased expression of HSP25 and HSP60 occurred after induction of AP. Especially, HSP60 was robustly elevated after Cer+LPS treatment, in both MK2-/- and wild-type mice. Thus the homozygous deletion of the MK2 gene ameliorates the severity of acute pancreatitis and accompanying systemic inflammatory reactions in a new model of severe acute pancreatitis. Our data support the hypothesis that MK2 participates in the multifactorial regulation of early inflammatory responses in AP, independently of the regulation of stress proteins like HSP25 and HSP60 and most likely due to its effect on cytokine regulation.


Asunto(s)
Chaperonina 60/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Pancreatitis/inducido químicamente , Pancreatitis/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Animales , Ceruletida/administración & dosificación , Ceruletida/farmacología , Eliminación de Gen , Proteínas de Choque Térmico/metabolismo , Interleucina-6/sangre , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/farmacología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Chaperonas Moleculares , Proteínas de Neoplasias/metabolismo , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Páncreas/patología , alfa-Amilasas Pancreáticas/metabolismo , Pancreatitis/patología , Peroxidasa/metabolismo , Tripsinógeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA