Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 92(3): 916-925, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38649977

RESUMEN

PURPOSE: The interest in applying and modeling dynamic MRS has recently grown. Two-dimensional modeling yields advantages for the precision of metabolite estimation in interrelated MRS data. However, it is unknown whether including all transients simultaneously in a 2D model without averaging (presuming a stable signal) performs similarly to one-dimensional (1D) modeling of the averaged spectrum. Therefore, we systematically investigated the accuracy, precision, and uncertainty estimation of both described model approaches. METHODS: Monte Carlo simulations of synthetic MRS data were used to compare the accuracy and uncertainty estimation of simultaneous 2D multitransient linear-combination modeling (LCM) with 1D-LCM of the average. A total of 2,500 data sets per condition with different noise representations of a 64-transient MRS experiment at six signal-to-noise levels for two separate spin systems (scyllo-inositol and gamma-aminobutyric acid) were analyzed. Additional data sets with different levels of noise correlation were also analyzed. Modeling accuracy was assessed by determining the relative bias of the estimated amplitudes against the ground truth, and modeling precision was determined by SDs and Cramér-Rao lower bounds (CRLBs). RESULTS: Amplitude estimates for 1D- and 2D-LCM agreed well and showed a similar level of bias compared with the ground truth. Estimated CRLBs agreed well between both models and with ground-truth CRLBs. For correlated noise, the estimated CRLBs increased with the correlation strength for the 1D-LCM but remained stable for the 2D-LCM. CONCLUSION: Our results indicate that the model performance of 2D multitransient LCM is similar to averaged 1D-LCM. This validation on a simplified scenario serves as a necessary basis for further applications of 2D modeling.


Asunto(s)
Algoritmos , Simulación por Computador , Espectroscopía de Resonancia Magnética , Método de Montecarlo , Espectroscopía de Resonancia Magnética/métodos , Humanos , Reproducibilidad de los Resultados , Modelos Lineales , Sensibilidad y Especificidad , Relación Señal-Ruido , Ácido gamma-Aminobutírico/metabolismo , Modelos Estadísticos
2.
Magn Reson Med ; 91(2): 431-442, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37876339

RESUMEN

PURPOSE: To compare the respective ability of PRESS and sLASER to reveal biological relationships, using age as a validation covariate at 3 T. METHODS: MRS data were acquired from 102 healthy volunteers using PRESS and sLASER in centrum semiovale and posterior cingulate cortex (PCC). Acquisition parameters included TR/TE = 2000/30 ms, 96 transients, and 2048 datapoints sampled at 2 kHz. Spectra were analyzed using Osprey. SNR, FWHM linewidth of total creatine, and metabolite concentrations were extracted. A linear model was used to compare SNR and linewidth. Paired t-tests were used to assess differences in metabolite measurements between PRESS and sLASER. Correlations were used to evaluate the relationship between PRESS and sLASER metabolite estimates, as well as the strength of each metabolite-age relationship. Coefficients of variation were calculated to assess inter-subject variability in each metabolite measurement. RESULTS: SNR and linewidth were significantly higher (p < 0.01) for sLASER than PRESS in PCC. Paired t-tests showed significant differences between PRESS and sLASER in most metabolite measurements. PRESS-sLASER measurements were significantly correlated (p < 0.05) for most metabolites. Metabolite-age relationships were consistently identified using both methods. Similar coefficients of variation were observed for most metabolites. CONCLUSION: The study results suggest strong agreement between PRESS and sLASER in identifying relationships between brain metabolites and age in centrum semiovale and PCC data acquired at 3 T. sLASER is technically desirable due to the reduced chemical shift displacement artifact; however, PRESS performed similarly in homogeneous brain regions at clinical field strength.


Asunto(s)
Encéfalo , Cuerpo Calloso , Humanos , Espectroscopía de Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Creatina/metabolismo , Modelos Lineales
3.
Magn Reson Med ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818623

RESUMEN

PURPOSE: The J-difference edited γ-aminobutyric acid (GABA) signal is contaminated by other co-edited signals-the largest of which originates from co-edited macromolecules (MMs)-and is consequently often reported as "GABA+." MM signals are broader and less well-characterized than the metabolites, and are commonly approximated using a Gaussian model parameterization. Experimentally measured MM signals are a consensus-recommended alternative to parameterized modeling; however, they are relatively under-studied in the context of edited MRS. METHODS: To address this limitation in the literature, we have acquired GABA-edited MEGA-PRESS data with pre-inversion to null metabolite signals in 13 healthy controls. An experimental MM basis function was derived from the mean across subjects. We further derived a new parameterization of the MM signals from the experimental data, using multiple Gaussians to accurately represent their observed asymmetry. The previous single-Gaussian parameterization, mean experimental MM spectrum and new multi-Gaussian parameterization were compared in a three-way analysis of a public MEGA-PRESS dataset of 61 healthy participants. RESULTS: Both the experimental MMs and the multi-Gaussian parameterization exhibited reduced fit residuals compared to the single-Gaussian approach (p = 0.034 and p = 0.031, respectively), suggesting they better represent the underlying data than the single-Gaussian parameterization. Furthermore, both experimentally derived models estimated larger MM fractional contribution to the GABA+ signal for the experimental MMs (58%) and multi-Gaussian parameterization (58%), compared to the single-Gaussian approach (50%). CONCLUSIONS: Our results indicate that single-Gaussian parameterization of edited MM signals is insufficient and that both experimentally derived GABA+ spectra and their parameterized replicas improve the modeling of GABA+ spectra.

4.
Magn Reson Med ; 91(3): 860-885, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946584

RESUMEN

Brain cell structure and function reflect neurodevelopment, plasticity, and aging; and changes can help flag pathological processes such as neurodegeneration and neuroinflammation. Accurate and quantitative methods to noninvasively disentangle cellular structural features are needed and are a substantial focus of brain research. Diffusion-weighted MRS (dMRS) gives access to diffusion properties of endogenous intracellular brain metabolites that are preferentially located inside specific brain cell populations. Despite its great potential, dMRS remains a challenging technique on all levels: from the data acquisition to the analysis, quantification, modeling, and interpretation of results. These challenges were the motivation behind the organization of the Lorentz Center workshop on "Best Practices & Tools for Diffusion MR Spectroscopy" held in Leiden, the Netherlands, in September 2021. During the workshop, the dMRS community established a set of recommendations to execute robust dMRS studies. This paper provides a description of the steps needed for acquiring, processing, fitting, and modeling dMRS data, and provides links to useful resources.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Consenso , Encéfalo/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Difusión , Imagen de Difusión por Resonancia Magnética/métodos
5.
Magn Reson Med ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748853

RESUMEN

PURPOSE: To develop a 3D, high-sensitivity CEST mapping technique based on the 3D stack-of-spirals (SOS) gradient echo readout, the proposed approach was compared with conventional acquisition techniques and evaluated for its efficacy in concurrently mapping of guanidino (Guan) and amide CEST in human brain at 3 T, leveraging the polynomial Lorentzian line-shape fitting (PLOF) method. METHODS: Saturation time and recovery delay were optimized to achieve maximum CEST time efficiency. The 3DSOS method was compared with segmented 3D EPI (3DEPI), turbo spin echo, and gradient- and spin-echo techniques. Image quality, temporal SNR (tSNR), and test-retest reliability were assessed. Maps of Guan and amide CEST derived from 3DSOS were demonstrated on a low-grade glioma patient. RESULTS: The optimized recovery delay/saturation time was determined to be 1.4/2 s for Guan and amide CEST. In addition to nearly doubling the slice number, the gradient echo techniques also outperformed spin echo sequences in tSNR: 3DEPI (193.8 ± 6.6), 3DSOS (173.9 ± 5.6), and GRASE (141.0 ± 2.7). 3DSOS, compared with 3DEPI, demonstrated comparable GuanCEST signal in gray matter (GM) (3DSOS: [2.14%-2.59%] vs. 3DEPI: [2.15%-2.61%]), and white matter (WM) (3DSOS: [1.49%-2.11%] vs. 3DEPI: [1.64%-2.09%]). 3DSOS also achieves significantly higher amideCEST in both GM (3DSOS: [2.29%-3.00%] vs. 3DEPI: [2.06%-2.92%]) and WM (3DSOS: [2.23%-2.66%] vs. 3DEPI: [1.95%-2.57%]). 3DSOS outperforms 3DEPI in terms of scan-rescan reliability (correlation coefficient: 3DSOS: 0.58-0.96 vs. 3DEPI: -0.02 to 0.75) and robustness to motion as well. CONCLUSION: The 3DSOS CEST technique shows promise for whole-cerebrum CEST imaging, offering uniform contrast and robustness against motion artifacts.

6.
NMR Biomed ; 37(4): e5076, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38091628

RESUMEN

Literature values vary widely for within-subject test-retest reproducibility of gamma-aminobutyric acid (GABA) measured with edited magnetic resonance spectroscopy (MRS). Reasons for this variation remain unclear. Here, we tested whether three acquisition parameters-(1) sequence complexity (two-experiment MEscher-GArwood Point RESolved Spectroscopy [MEGA-PRESS] vs. four-experiment Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy [HERMES]); (2) editing pulse duration (14 vs. 20 ms); and (3) scanner frequency drift (interleaved water referencing [IWR] turned ON vs. OFF)-and two linear combination modeling variations-(1) three different coedited macromolecule models (called "1to1GABA", "1to1GABAsoft", and "3to2MM" in the Osprey software package); and (2) 0.55- versus 0.4-ppm spline baseline knot spacing-affected the within-subject coefficient of variation of GABA + macromolecules (GABA+). We collected edited MRS data from the dorsal anterior cingulate cortex from 20 participants (mean age: 30.8 ± 9.5 years; 10 males). Test and retest scans were separated by removing the participant from the scanner for 5-10 min. Each acquisition consisted of two MEGA-PRESS and two HERMES sequences with editing pulse durations of 14 and 20 ms (referred to here as MEGA-14, MEGA-20, HERMES-14, and HERMES-20; all TE = 80 ms, 224 averages). We identified the best test-retest reproducibility following postprocessing with a composite model of the 0.9- and 3-ppm macromolecules ("3to2MM"); this model performed particularly well for the HERMES data. Furthermore, sparser (0.55- compared with 0.4-ppm) spline baseline knot spacing yielded generally better test-retest reproducibility for GABA+. Replicating our prior results, linear combination modeling in Osprey compared with simple peak fitting in Gannet resulted in substantially better test-retest reproducibility. However, reproducibility did not consistently differ for MEGA-PRESS compared with HERMES, for 14- compared with 20-ms editing pulses, or for IWR-ON versus IWR-OFF. These results highlight the importance of model selection for edited MRS studies of GABA+, particularly for clinical studies that focus on individual patient differences in GABA+ or changes following an intervention.


Asunto(s)
Encéfalo , Ácido gamma-Aminobutírico , Masculino , Humanos , Adulto Joven , Adulto , Reproducibilidad de los Resultados , Espectroscopía de Resonancia Magnética/métodos , Fantasmas de Imagen , Sustancias Macromoleculares/metabolismo , Encéfalo/metabolismo
7.
NMR Biomed ; : e5152, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565525

RESUMEN

Relaxation correction is an integral step in quantifying brain metabolite concentrations measured by in vivo magnetic resonance spectroscopy (MRS). While most quantification routines assume constant T1 relaxation across age, it is possible that aging alters T1 relaxation rates, as is seen for T2 relaxation. Here, we investigate the age dependence of metabolite T1 relaxation times at 3 T in both gray- and white-matter-rich voxels using publicly available metabolite and metabolite-nulled (single inversion recovery TI = 600 ms) spectra acquired at 3 T using Point RESolved Spectroscopy (PRESS) localization. Data were acquired from voxels in the posterior cingulate cortex (PCC) and centrum semiovale (CSO) in 102 healthy volunteers across 5 decades of life (aged 20-69 years). All spectra were analyzed in Osprey v.2.4.0. To estimate T1 relaxation times for total N-acetyl aspartate at 2.0 ppm (tNAA2.0) and total creatine at 3.0 ppm (tCr3.0), the ratio of modeled metabolite residual amplitudes in the metabolite-nulled spectrum to the full metabolite signal was calculated using the single-inversion-recovery signal equation. Correlations between T1 and subject age were evaluated. Spearman correlations revealed that estimated T1 relaxation times of tNAA2.0 (rs = -0.27; p < 0.006) and tCr3.0 (rs = -0.40; p < 0.001) decreased significantly with age in white-matter-rich CSO, and less steeply for tNAA2.0 (rs = -0.228; p = 0.005) and (not significantly for) tCr3.0 (rs = -0.13; p = 0.196) in graymatter-rich PCC. The analysis harnessed a large publicly available cross-sectional dataset to test an important hypothesis, that metabolite T1 relaxation times change with age. This preliminary study stresses the importance of further work to measure age-normed metabolite T1 relaxation times for accurate quantification of metabolite levels in studies of aging.

8.
NMR Biomed ; 36(2): e4839, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36196802

RESUMEN

Out-of-voxel (OOV) signals are common spurious echo artifacts in MRS. These signals often manifest in the spectrum as very strong "ripples," which interfere with spectral quantification by overlapping with targeted metabolite resonances. Dephasing optimization through coherence order pathway selection (DOTCOPS) gradient schemes are algorithmically optimized to suppress all potential alternative coherence transfer pathways (CTPs), and should suppress unwanted OOV echoes. In addition, second-order shimming uses non-linear gradient fields to maximize field homogeneity inside the voxel, which unfortunately increases the diversity of local gradient fields outside of the voxel. Given that strong local spatial B0 gradients can refocus unintended CTPs, it is possible that OOVs are less prevalent when only linear first-order shimming is applied. Here we compare the size of unwanted OOV signals in Hadamard-edited (HERMES) data acquired with either a local gradient scheme (which we refer to here as "Shared") or DOTCOPS, and with first- or second-order shimming. We collected data from 15 healthy volunteers in two brain regions (voxel size 30 × 26 × 26 mm3 ) from which it is challenging to acquire MRS data: medial prefrontal cortex and left temporal cortex. Characteristic OOV echoes were seen in both GABA- and GSH-edited spectra for both brain regions, gradient schemes, and shimming approaches. A linear mixed-effect model revealed a statistically significant difference in the average residual based on the gradient scheme in both GABA- (p < 0.001) and GSH-edited (p < 0.001) spectra: that is, the DOTCOPS gradient scheme resulted in smaller OOV artifacts compared with the Shared scheme. There were no significant differences in OOV artifacts associated with shimming method. Thus, these results suggest that the DOTCOPS gradient scheme for J-difference-edited PRESS acquisitions yields spectra with smaller OOV echo artifacts than the Shared gradient scheme implemented in a widely disseminated editing sequence.


Asunto(s)
Artefactos , Encéfalo , Humanos , Espectroscopía de Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Cabeza , Ácido gamma-Aminobutírico/metabolismo
9.
NMR Biomed ; 36(7): e4907, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36651918

RESUMEN

The present study characterized associations among brain metabolite levels, applying bivariate and multivariate (i.e., factor analysis) statistical methods to total creatine (tCr)-referenced estimates of the major Point RESolved Spectroscopy (PRESS) proton MR spectroscopy (1 H-MRS) metabolites (i.e., total NAA/tCr, total choline/tCr, myo-inositol/tCr, glutamate + glutamine/tCr) acquired at 3 T from medial parietal lobe in a large (n = 299), well-characterized international cohort of healthy volunteers. Results supported the hypothesis that 1 H-MRS-measured metabolite estimates are moderately intercorrelated (Mr = 0.42, SDr = 0.11, ps < 0.001), with more than one-half (i.e., 57%) of the total variability in metabolite estimates explained by a single common factor. Older age was significantly associated with lower levels of the identified common metabolite variance (CMV) factor (ß = -0.09, p = 0.048), despite not being associated with levels of any individual metabolite. Holding CMV factor levels constant, females had significantly lower levels of total choline (i.e., unique metabolite variance; ß = -0.19, p < 0.001), mirroring significant bivariate correlations between sex and total choline reported previously. Supplementary analysis of water-referenced metabolite estimates (i.e., including tCr/water) demonstrated lower, although still substantial, intercorrelations among metabolites, with 37% of total metabolite variance explained by a single common factor. If replicated, these results would suggest that applied 1 H-MRS researchers shift their analytical framework from examining bivariate associations between individual metabolites and specialty-dependent (e.g., clinical, research) variables of interest (e.g., using t-tests) to examining multivariable (i.e., covariate) associations between multiple metabolites and specialty-dependent variables of interest (e.g., using multiple regression).


Asunto(s)
Infecciones por Citomegalovirus , Protones , Femenino , Humanos , Espectroscopía de Resonancia Magnética/métodos , Espectroscopía de Protones por Resonancia Magnética/métodos , Creatina/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Colina/metabolismo , Inositol/metabolismo , Ácido Aspártico , Agua/metabolismo , Infecciones por Citomegalovirus/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo
10.
NMR Biomed ; 36(3): e4854, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36271899

RESUMEN

Expert consensus recommends linear-combination modeling (LCM) of 1 H MR spectra with sequence-specific simulated metabolite basis function and experimentally derived macromolecular (MM) basis functions. Measured MM basis functions are usually derived from metabolite-nulled spectra averaged across a small cohort. The use of subject-specific instead of cohort-averaged measured MM basis functions has not been studied widely. Furthermore, measured MM basis functions are not widely available to non-expert users, who commonly rely on parameterized MM signals internally simulated by LCM software. To investigate the impact of the choice of MM modeling, this study, therefore, compares metabolite level estimates between different MM modeling strategies (cohort-mean measured; subject-specific measured; parameterized) in a lifespan cohort and characterizes its impact on metabolite-age associations. 100 conventional (TE = 30 ms) and metabolite-nulled (TI = 650 ms) PRESS datasets, acquired from the medial parietal lobe in a lifespan cohort (20-70 years of age), were analyzed in Osprey. Short-TE spectra were modeled in Osprey using six different strategies to consider the MM baseline. Fully tissue- and relaxation-corrected metabolite levels were compared between MM strategies. Model performance was evaluated by model residuals, the Akaike information criterion (AIC), and the impact on metabolite-age associations. The choice of MM strategy had a significant impact on the mean metabolite level estimates and no major impact on variance. Correlation analysis revealed moderate-to-strong agreement between different MM strategies (r > 0.6). The lowest relative model residuals and AIC values were found for the cohort-mean measured MM. Metabolite-age associations were consistently found for two major singlet signals (total creatine (tCr])and total choline (tCho)) for all MM strategies; however, findings for metabolites that are less distinguishable from the background signals associations depended on the MM strategy. A variance partition analysis indicated that up to 44% of the total variance was related to the choice of MM strategy. Additionally, the variance partition analysis reproduced the metabolite-age association for tCr and tCho found in the simpler correlation analysis. In summary, the inclusion of a single high signal-to-noise ratio MM basis function (cohort-mean) in the short-TE LCM leads to more lower model residuals and AIC values compared with MM strategies with more degrees of freedom (Gaussian parametrization) or subject-specific MM information. Integration of multiple LCM analyses into a single statistical model potentially allows to identify the robustness in the detection of underlying effects (e.g., metabolite vs. age), reduces algorithm-based bias, and estimates algorithm-related variance.


Asunto(s)
Encéfalo , Colina , Humanos , Encéfalo/metabolismo , Estudios de Factibilidad , Espectroscopía de Resonancia Magnética/métodos , Relación Señal-Ruido , Sustancias Macromoleculares/metabolismo , Colina/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo
11.
Int J Neuropsychopharmacol ; 26(6): 438-450, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37235749

RESUMEN

BACKGROUND: 3,4-Methylenedioxymethamphetamine (MDMA) is a widely used recreational substance inducing acute release of serotonin. Previous studies in chronic MDMA users demonstrated selective adaptations in the serotonin system, which were assumed to be associated with cognitive deficits. However, serotonin functions are strongly entangled with glutamate as well as γ-aminobutyric acid (GABA) neurotransmission, and studies in MDMA-exposed rats show long-term adaptations in glutamatergic and GABAergic signaling. METHODS: We used proton magnetic resonance spectroscopy (MRS) to measure the glutamate-glutamine complex (GLX) and GABA concentrations in the left striatum and medial anterior cingulate cortex (ACC) of 44 chronic but recently abstinent MDMA users and 42 MDMA-naïve healthy controls. While the Mescher-Garwood point-resolved-spectroscopy sequence (MEGA-PRESS) is best suited to quantify GABA, recent studies reported poor agreement between conventional short-echo-time PRESS and MEGA-PRESS for GLX measures. Here, we applied both sequences to assess their agreement and potential confounders underlying the diverging results. RESULTS: Chronic MDMA users showed elevated GLX levels in the striatum but not the ACC. Regarding GABA, we found no group difference in either region, although a negative association with MDMA use frequency was observed in the striatum. Overall, GLX measures from MEGA-PRESS, with its longer echo time, appeared to be less confounded by macromolecule signal than the short-echo-time PRESS and thus provided more robust results. CONCLUSION: Our findings suggest that MDMA use affects not only serotonin but also striatal GLX and GABA concentrations. These insights may offer new mechanistic explanations for cognitive deficits (e.g., impaired impulse control) observed in MDMA users.


Asunto(s)
Ácido Glutámico , N-Metil-3,4-metilenodioxianfetamina , Ratas , Animales , Espectroscopía de Resonancia Magnética/métodos , Serotonina , Giro del Cíngulo/diagnóstico por imagen , Ácido gamma-Aminobutírico , Glutamina
12.
Anal Biochem ; 676: 115227, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423487

RESUMEN

Proton (1H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo. Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.


Asunto(s)
Encéfalo , Programas Informáticos , Espectroscopía de Resonancia Magnética/métodos , Encéfalo/metabolismo , Algoritmos , Estándares de Referencia , Protones
13.
Metab Brain Dis ; 38(4): 1221-1238, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36729261

RESUMEN

Hepatic encephalopathy (HE) is a common neurological manifestation of liver cirrhosis and is characterized by an increase of ammonia in the brain accompanied by a disrupted neurotransmitter balance, including the GABAergic and glutamatergic systems. The aim of this study is to investigate metabolic abnormalities in the cerebello-thalamo-cortical system of HE patients using GABA-edited MRS and links between metabolite levels, disease severity, critical flicker frequency (CFF), motor performance scores, and blood ammonia levels. GABA-edited MRS was performed in 35 participants (16 controls, 19 HE patients) on a clinical 3 T MRI system. MRS voxels were placed in the right cerebellum, left thalamus, and left motor cortex. Levels of GABA+ and of other metabolites of interest (glutamine, glutamate, myo-inositol, glutathione, total choline, total NAA, and total creatine) were assessed. Group differences in metabolite levels and associations with clinical metrics were tested. GABA+ levels were significantly increased in the cerebellum of patients with HE. GABA+ levels in the motor cortex were significantly decreased in HE patients, and correlated with the CFF (r = 0.73; p < .05) and motor performance scores (r = -0.65; p < .05). Well-established HE-typical metabolite patterns (increased glutamine, decreased myo-inositol and total choline) were confirmed in all three regions and were closely linked to clinical metrics. In summary, our findings provide further evidence for alterations in the GABAergic system in the cerebellum and motor cortex in HE. These changes were accompanied by characteristic patterns of osmolytes and oxidative stress markers in the cerebello-thalamo-cortical system. These metabolic disturbances are a likely contributor to HE motor symptoms in HE. In patients with hepatic encephalopathy, GABA+ levels in the cerebello-thalamo-cortical loop are significantly increased in the cerebellum and significantly decreased in the motor cortex. GABA+ levels in the motor cortex strongly correlate with critical flicker frequency (CFF) and motor performance score (pegboard test tPEG), but not blood ammonia levels (NH3).


Asunto(s)
Encefalopatía Hepática , Humanos , Encefalopatía Hepática/metabolismo , Glutamina/metabolismo , Amoníaco , Cerebelo/diagnóstico por imagen , Cerebelo/metabolismo , Inositol , Ácido gamma-Aminobutírico/metabolismo , Colina/metabolismo
14.
J Med Syst ; 47(1): 69, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37418036

RESUMEN

Magnetic resonance spectroscopy (MRS) can non-invasively measure levels of endogenous metabolites in living tissue and is of great interest to neuroscience and clinical research. To this day, MRS data analysis workflows differ substantially between groups, frequently requiring many manual steps to be performed on individual datasets, e.g., data renaming/sorting, manual execution of analysis scripts, and manual assessment of success/failure. Manual analysis practices are a substantial barrier to wider uptake of MRS. They also increase the likelihood of human error and prevent deployment of MRS at large scale. Here, we demonstrate an end-to-end workflow for fully automated data uptake, processing, and quality review.The proposed continuous automated MRS analysis workflow integrates several recent innovations in MRS data and file storage conventions. They are efficiently deployed by a directory monitoring service that automatically triggers the following steps upon arrival of a new raw MRS dataset in a project folder: (1) conversion from proprietary manufacturer file formats into the universal format NIfTI-MRS; (2) consistent file system organization according to the data accumulation logic standard BIDS-MRS; (3) executing a command-line executable of our open-source end-to-end analysis software Osprey; (4) e-mail delivery of a quality control summary report for all analysis steps.The automated architecture successfully completed for a demonstration dataset. The only manual step required was to copy a raw data folder into a monitored directory.Continuous automated analysis of MRS data can reduce the burden of manual data analysis and quality control, particularly for non-expert users and multi-center or large-scale studies and offers considerable economic advantages.


Asunto(s)
Programas Informáticos , Humanos , Flujo de Trabajo , Espectroscopía de Resonancia Magnética/métodos , Probabilidad
15.
Neuroimage ; 264: 119740, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356822

RESUMEN

PURPOSE: The neurometabolic timecourse of healthy aging is not well-established, in part due to diversity of quantification methodology. In this study, a large structured cross-sectional cohort of male and female subjects throughout adulthood was recruited to investigate neurometabolic changes as a function of age, using consensus-recommended magnetic resonance spectroscopy quantification methods. METHODS: 102 healthy volunteers, with approximately equal numbers of male and female participants in each decade of age from the 20s, 30s, 40s, 50s, and 60s, were recruited with IRB approval. MR spectroscopic data were acquired on a 3T MRI scanner. Metabolite spectra were acquired using PRESS localization (TE=30 ms; 96 transients) in the centrum semiovale (CSO) and posterior cingulate cortex (PCC). Water-suppressed spectra were modeled using the Osprey algorithm, employing a basis set of 18 simulated metabolite basis functions and a cohort-mean measured macromolecular spectrum. Pearson correlations were conducted to assess relationships between metabolite concentrations and age for each voxel; Spearman correlations were conducted where metabolite distributions were non-normal. Paired t-tests were run to determine whether metabolite concentrations differed between the PCC and CSO. Finally, robust linear regressions were conducted to assess both age and sex as predictors of metabolite concentrations in the PCC and CSO and separately, to assess age, signal-noise ratio, and full width half maximum (FWHM) linewidth as predictors of metabolite concentrations. RESULTS: Data from four voxels were excluded (2 ethanol; 2 unacceptably large lipid signal). Statistically-significant age*metabolite Pearson correlations were observed for tCho (r(98)=0.33, p<0.001), tCr (r(98)=0.60, p<0.001), and mI (r(98)=0.32, p=0.001) in the CSO and for NAAG (r(98)=0.26, p=0.008), tCho(r(98)=0.33, p<0.001), tCr (r(98)=0.39, p<0.001), and Gln (r(98)=0.21, p=0.034) in the PCC. Spearman correlations for non-normal variables revealed a statistically significant correlation between sI and age in the CSO (r(86)=0.26, p=0.013). No significant correlations were seen between age and tNAA, NAA, Glx, Glu, GSH, PE, Lac, or Asp in either region (all p>0.20). Age associations for tCho, tCr, mI and sI in the CSO and for NAAG, tCho, and tCr in the PCC remained when controlling for sex in robust regressions. CSO NAAG and Asp, as well as PCC tNAA, sI, and Lac were higher in women; PCC Gln was higher in men. When including an age*sex interaction term in robust regression models, a significant age*sex interaction was seen for tCho (F(1,96)=11.53, p=0.001) and GSH (F(1,96)=7.15, p=0.009) in the CSO and tCho (F(1,96)=9.17, p=0.003), tCr (F(1,96)=9.59, p=0.003), mI (F(1,96)=6.48, p=0.012), and Lac (F(1,78)=6.50, p=0.016) in the PCC. In all significant interactions, metabolite levels increased with age in females, but not males. There was a significant positive correlation between linewidth and age. Age relationships with tCho, tCr, and mI in the CSO and tCho, tCr, mI, and sI in the PCC were significant after controlling for linewidth and FWHM in robust regressions. CONCLUSION: The primary (correlation) results indicated age relationships for tCho, tCr, mI, and sI in the CSO and for NAAG, tCho, tCr, and Gln in the PCC, while no age correlations were found for tNAA, NAA, Glx, Glu, GSH, PE, Lac, or Asp in either region. Our results provide a normative foundation for future work investigating the neurometabolic time course of healthy aging using MRS.


Asunto(s)
Giro del Cíngulo , Imagen por Resonancia Magnética , Masculino , Humanos , Femenino , Adulto , Estudios Transversales , Espectroscopía de Resonancia Magnética/métodos , Giro del Cíngulo/metabolismo , Algoritmos , Colina/metabolismo , Ácido Aspártico
16.
Magn Reson Med ; 87(1): 50-56, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34411324

RESUMEN

PURPOSE: To demonstrate J-difference editing of phosphorylethanolamine (PE) with chemical shifts at 3.22 (PE3.22 ) and 3.98 (PE3.98 ) ppm, and compare the merits of two editing strategies. METHODS: Density-matrix simulations of MEGA-PRESS (Mescher-Garwood PRESS) for PE were performed at TEs ranging from 80 to 200 ms in steps of 2 ms, applying 20-ms editing pulses (ON/OFF) at (1) 3.98/7.5 ppm to detect PE3.22 and (2) 3.22/7.5 ppm to detect PE3.98 . Phantom experiments were performed using a PE phantom to validate simulation results. Ten subjects were scanned using a Philips 3T MRI scanner at TEs of 90 ms and 110 ms to edit PE3.22 and PE3.98 . Osprey was used for data processing, modeling, and quantification. RESULTS: Simulations show substantial TE modulation of the intensity and shape of the edited signals due to coupling evolution. Simulated and phantom integrals suggest that TEs of 110 ms and 90 ms were optimal for the edited detection of PE3.22 and PE3.98 , respectively. Phantom results indicated strong agreement with the simulated spectra and integrals. In vivo quantification of the PE3.22 /total creatine and PE3.98 /total creatine concentration ratio yielded values of 0.26 ± 0.04 (between-subject coefficient of variation [CV]: 15.4%) and 0.18 ± 0.04 (CV: 22.8%), respectively, at TE = 90 ms, and 0.24 ± 0.02 (CV: 8.2%) and 0.23 ± 0.04 (CV: 18.0%), respectively, at TE = 110 ms. CONCLUSION: Simulations and in vivo MEGA-PRESS of PE demonstrate that both PE3.22 and PE3.98 are potential candidates for editing, but PE3.22 at TE = 110 ms yields lower variation across TEs.


Asunto(s)
Imagen por Resonancia Magnética , Simulación por Computador , Etanolaminas , Humanos , Fantasmas de Imagen
17.
Magn Reson Med ; 87(2): 589-596, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34520079

RESUMEN

PURPOSE: To investigate the editing-pulse flip angle (FA) dependence of editing efficiency and ultimately to maximize the edited signal of commonly edited MR spectroscopy (MRS) signals, such as gamma-aminobutyric acid (GABA) and lactate. METHODS: Density-matrix simulations were performed for a range of spin systems to find the editing-pulse FA for maximal editing efficiency. Simulations were confirmed by phantom experiments and in vivo measurements in 10 healthy participants using a 3T Philips scanner. Four MEGA-PRESS in vivo measurements targeting GABA+ and lactate were performed, comparing the conventional editing-pulse FA (FA = 180°) to the optimal one suggested by simulations (FA = 210°). RESULTS: Simulations and phantom experiments show that edited GABA and lactate signals are maximal at FA = 210°. Compared to conventional editing (FA = 180°), in vivo signals from GABA+ and lactate signals increase on average by 8.5% and 9.3%, respectively. CONCLUSION: Increasing the FA of editing-pulses in the MEGA-PRESS experiment from 180° to 210° increases the edited signals from GABA+ and lactate by about 9% in vivo.


Asunto(s)
Ácido Láctico , Ácido gamma-Aminobutírico , Voluntarios Sanos , Humanos , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen
18.
Magn Reson Med ; 88(6): 2358-2370, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36089825

RESUMEN

PURPOSE: Multiple data formats in the MRS community currently hinder data sharing and integration. NIfTI-MRS is proposed as a standard spectroscopy data format, implemented as an extension to the Neuroimaging informatics technology initiative (NIfTI) format. This standardized format can facilitate data sharing and algorithm development as well as ease integration of MRS analysis alongside other imaging modalities. METHODS: A file format using the NIfTI header extension framework incorporates essential spectroscopic metadata and additional encoding dimensions. A detailed description of the specification is provided. An open-source command-line conversion program is implemented to convert single-voxel and spectroscopic imaging data to NIfTI-MRS. Visualization of data in NIfTI-MRS is provided by development of a dedicated plugin for FSLeyes, the FMRIB Software Library (FSL) image viewer. RESULTS: Online documentation and 10 example datasets in the proposed format are provided. Code examples of NIfTI-MRS readers are implemented in common programming languages. Conversion software, spec2nii, currently converts 14 formats where data is stored in image-space to NIfTI-MRS, including Digital Imaging and Communications in Medicine (DICOM) and vendor proprietary formats. CONCLUSION: NIfTI-MRS aims to solve issues arising from multiple data formats being used in the MRS community. Through a single conversion point, processing and analysis of MRS data are simplified, thereby lowering the barrier to use of MRS. Furthermore, it can serve as the basis for open data sharing, collaboration, and interoperability of analysis programs. Greater standardization and harmonization become possible. By aligning with the dominant format in neuroimaging, NIfTI-MRS enables the use of mature tools present in the imaging community, demonstrated in this work by using a dedicated imaging tool, FSLeyes, for visualization.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Informática , Espectroscopía de Resonancia Magnética , Programas Informáticos , Tecnología
19.
Magn Reson Med ; 88(5): 1994-2004, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35775808

RESUMEN

PURPOSE: The purpose of this study is to present a cloud-based spectral simulation tool "MRSCloud," which allows MRS users to simulate a vendor-specific and sequence-specific basis set online in a convenient and time-efficient manner. This tool can simulate basis sets for GE, Philips, and Siemens MR scanners, including conventional acquisitions and spectral editing schemes with PRESS and semi-LASER localization at 3 T. METHODS: The MRSCloud tool was built on the spectral simulation functionality in the FID-A software package. We added three extensions to accelerate computation (ie, one-dimensional projection method, coherence pathways filters, and precalculation of propagators). The RF waveforms were generated based on vendors' generic pulse shapes and timings. Simulations were compared within MRSCloud using different numbers of spatial resolution (21 × 21, 41 × 41, and 101 × 101). Simulated metabolite basis functions from MRSCloud were compared with those generated by the generic FID-A and MARSS, and a phantom-acquired basis set from LCModel. Intraclass correlation coefficients were calculated to measure the agreement between individual metabolite basis functions. Statistical analysis was performed using R in RStudio. RESULTS: Simulation time for a full PRESS basis set is approximately 11 min on the server. The interclass correlation coefficients ICCs were at least 0.98 between MRSCloud and FID-A and were at least 0.96 between MRSCloud and MARSS. The interclass correlation coefficients between simulated MRSCloud basis spectra and acquired LCModel basis spectra were lowest for glutamine at 0.68 and highest for N-acetylaspartate at 0.96. CONCLUSIONS: Substantial reductions in runtime have been achieved. High ICC values indicated that the accelerating features are running correctly and produce comparable and accurate basis sets.


Asunto(s)
Nube Computacional , Glutamina , Simulación por Computador , Espectroscopía de Resonancia Magnética/métodos , Fantasmas de Imagen
20.
Magn Reson Med ; 87(4): 1711-1719, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34841564

RESUMEN

PURPOSE: To acquire the mobile macromolecule (MM) spectrum from healthy participants, and to investigate changes in the signals with age and sex. METHODS: 102 volunteers (49 M/53 F) between 20 and 69 years were recruited for in vivo data acquisition in the centrum semiovale (CSO) and posterior cingulate cortex (PCC). Spectral data were acquired at 3T using PRESS localization with a voxel size of 30 × 26 × 26 mm3 , pre-inversion (TR/TI 2000/600 ms) and CHESS water suppression. Metabolite-nulled spectra were modeled to eliminate residual metabolite signals, which were then subtracted out to yield a "clean" MM spectrum using the Osprey software. Pearson's correlation coefficient was calculated between integrals and age for the 14 MM signals. One-way ANOVA was performed to determine differences between age groups. An independent t-test was carried out to determine differences between sexes. RESULTS: MM spectra were successfully acquired in 99 (CSO) and 96 (PCC) of 102 subjects. No significant correlations were seen between age and MM signals. One-way ANOVA also suggested no age-group differences for any MM peak (all p > .004). No differences were observed between sex groups. WM and GM voxel fractions showed a significant (p < .05) negative linear association with age in the WM-predominant CSO (R = -0.29) and GM-predominant PCC regions (R = -0.57) respectively while CSF increased significantly with age in both regions. CONCLUSION: Our findings suggest that a pre-defined MM basis function can be used for linear combination modeling of metabolite data from different age and sex groups.


Asunto(s)
Envejecimiento Saludable , Encéfalo/metabolismo , Voluntarios Sanos , Humanos , Sustancias Macromoleculares/metabolismo , Espectroscopía de Resonancia Magnética , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA