Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Neurosci ; 35(20): 7878-91, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25995473

RESUMEN

During nervous system development, critical periods are usually defined as early periods during which manipulations dramatically change neuronal structure or function, whereas the same manipulations in mature animals have little or no effect on the same property. Neurons in the ventral cochlear nucleus (CN) are dependent on excitatory afferent input for survival during a critical period of development. Cochlear removal in young mammals and birds results in rapid death of target neurons in the CN. Cochlear removal in older animals results in little or no neuron death. However, the extent to which hair-cell-specific afferent activity prevents neuronal death in the neonatal brain is unknown. We further explore this phenomenon using a new mouse model that allows temporal control of cochlear hair cell deletion. Hair cells express the human diphtheria toxin (DT) receptor behind the Pou4f3 promoter. Injections of DT resulted in nearly complete loss of organ of Corti hair cells within 1 week of injection regardless of the age of injection. Injection of DT did not influence surrounding supporting cells directly in the sensory epithelium or spiral ganglion neurons (SGNs). Loss of hair cells in neonates resulted in rapid and profound neuronal loss in the ventral CN, but not when hair cells were eliminated at a more mature age. In addition, normal survival of SGNs was dependent on hair cell integrity early in development and less so in mature animals. This defines a previously undocumented critical period for SGN survival.


Asunto(s)
Núcleo Coclear/crecimiento & desarrollo , Células Ciliadas Auditivas/citología , Ganglio Espiral de la Cóclea/crecimiento & desarrollo , Animales , Muerte Celular , Núcleo Coclear/citología , Núcleo Coclear/fisiología , Toxina Diftérica/farmacología , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Audición , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/fisiología
2.
J Neurosci ; 31(43): 15329-39, 2011 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22031879

RESUMEN

The capacity of adult mammals to regenerate sensory hair cells is not well defined. To explore early steps in this process, we examined reactivation of a transiently expressed developmental gene, Atoh1, in adult mouse utricles after neomycin-induced hair cell death in culture. Using an adenoviral reporter for Atoh1 enhancer, we found that Atoh1 transcription is activated in some hair cell progenitors (supporting cells) 3 d after neomycin treatment. By 18 d after neomycin, the number of cells with Atoh1 transcriptional activity increased significantly, but few cells acquired hair cell features (i.e., accumulated ATOH1 or myosin VIIa protein or developed stereocilia). Treatment with DAPT, an inhibitor of γ-secretase, reduced notch pathway activity, enhanced Atoh1 transcriptional activity, and dramatically increased the number of Atoh1-expressing cells with hair cell features, but only in the striolar/juxtastriolar region. Similar effects were seen with TAPI-1, an inhibitor of another enzyme required for notch activity (TACE). Division of supporting cells was rare in any control or DAPT-treated utricles. This study shows that mature mammals have a natural capacity to initiate vestibular hair cell regeneration and suggests that regional notch activity is a significant inhibitor of direct transdifferentiation of supporting cells into hair cells following damage.


Asunto(s)
Regeneración Nerviosa/fisiología , Inhibición Neural/fisiología , Receptores Notch/metabolismo , Sáculo y Utrículo/citología , Proteínas ADAM/farmacología , Proteína ADAM17 , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Calbindinas , Calmodulina/metabolismo , Muerte Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Dipéptidos/farmacología , Proteínas Fluorescentes Verdes/genética , Células Ciliadas Auditivas/efectos de los fármacos , Ácidos Hidroxámicos/farmacología , Indoles , Ratones , Neomicina/toxicidad , Regeneración Nerviosa/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Técnicas de Cultivo de Órganos , Inhibidores de la Síntesis de la Proteína/toxicidad , Proteína G de Unión al Calcio S100/metabolismo , Sáculo y Utrículo/lesiones , Factores de Tiempo , Transducción Genética/métodos , Miosinas Ventriculares/metabolismo
3.
J Neurosci ; 30(2): 478-90, 2010 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20071511

RESUMEN

Humans and other mammals are highly susceptible to permanent hearing and balance deficits due to an inability to regenerate sensory hair cells lost to inner ear trauma. In contrast, nonmammalian vertebrates, such as birds, robustly regenerate replacement hair cells and restore hearing and balance functions to near-normal levels. There is considerable interest in understanding the cellular mechanisms responsible for this difference in regenerative capacity. Here we report on involvement of the TGFbeta superfamily type II activin receptors, Acvr2a and Acvr2b, in regulating proliferation in mature avian auditory sensory epithelium. Cultured, posthatch avian auditory sensory epithelium treated with Acvr2a and Acvr2b inhibitors shows decreased proliferation of support cells, the cell type that gives rise to new hair cells. Conversely, addition of activin A, an Acvr2a/b ligand, potentiates support cell proliferation. Neither treatment (inhibitor or ligand) affected hair cell survival, suggesting a specific effect of Acvr2a/b signaling on support cell mitogenicity. Using immunocytochemistry, Acvr2a, Acvr2b, and downstream Smad effector proteins were differentially localized in avian and mammalian auditory sensory epithelia. Collectively, these data suggest that signaling through Acvr2a/b promotes support cell proliferation in mature avian auditory sensory epithelium and that this signaling pathway may be incomplete, or actively blocked, in the adult mammalian ear.


Asunto(s)
Activinas/farmacología , Proliferación Celular/efectos de los fármacos , Conducto Coclear/citología , Epitelio/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Receptores de Activinas Tipo II/metabolismo , Activinas/genética , Activinas/metabolismo , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Recuento de Células/métodos , Embrión de Pollo , Pollos , Relación Dosis-Respuesta a Droga , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Epitelio/anatomía & histología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/metabolismo , Células Laberínticas de Soporte/metabolismo , Ratones , Técnicas de Cultivo de Órganos , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteínas Smad/metabolismo
4.
Gene Expr Patterns ; 7(7): 798-807, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17604700

RESUMEN

A cascade of transcription factors is believed to regulate the coordinate differentiation of primordial inner ear cells into the subtypes of hair cells and supporting cells. While candidate genes involved in this process have been identified, the temporal and spatial patterns of expression of many of these have not been carefully described during the extended period of inner ear development and functional maturation. We systematically examined the expression of two such transcription factors, LHX3 and SOX2, from the time of hair cell terminal mitoses into adulthood. We show that LHX3 is expressed specifically in auditory and vestibular hair cells soon after terminal mitoses and persists into the adult in vestibular hair cells. While SOX2 expression is widespread in the inner ear sensory epithelia prior to hair cell differentiation, it has a unique pattern of expression in the mature auditory and vestibular organs.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/fisiología , Oído Interno/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/fisiología , Transactivadores/biosíntesis , Transactivadores/fisiología , Animales , Diferenciación Celular , Sordera , Perfilación de la Expresión Génica , Proteínas con Homeodominio LIM , Ratones , Microscopía Confocal , Microscopía Fluorescente , Modelos Genéticos , Estructura Terciaria de Proteína , Factores de Transcripción SOXB1 , Factores de Tiempo , Distribución Tisular , Factores de Transcripción
5.
J Comp Neurol ; 496(2): 172-86, 2006 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-16538679

RESUMEN

We carried out an analysis of the expression of Prox1, a homeo-domain transcription factor, during mouse inner ear development with particular emphasis on the auditory system. Prox1 is expressed in the otocyst beginning at embryonic day (E)11, in the developing vestibular sensory patches. Expression is down regulated in maturing (myosin VIIA immunoreactive) vestibular hair cells and subsequently in the underlying support cell layer by E16.5. In the auditory sensory epithelium, Prox1 is initially expressed at embryonic day 14.5 in a narrow stripe of cells at the base of the cochlea. This stripe encompasses the full thickness of the sensory epithelium, including developing hair cells and support cells. Over the next several days the stripe of expression extends to the apex, and as the sensory epithelium differentiates Prox1 becomes restricted to a subset of support cells. Double labeling for Prox1 and cell-type-specific markers revealed that the outer hair cells transiently express Prox1. After E18, Prox1 protein is no longer detectable in hair cells, but it continues to be expressed in support cells for the rest of embryogenesis and into the second postnatal week. During this time, Prox1 is not expressed in all support cell types in the organ of Corti, but is restricted to developing Deiters' and pillar cells. The expression is maintained in these cells into the second week of postnatal life, at which time Prox1 is dynamically down regulated. These studies form a baseline from which we can analyze the role of Prox1 in vertebrate sensory development.


Asunto(s)
Cóclea/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cóclea/embriología , Cóclea/crecimiento & desarrollo , Embrión de Mamíferos , Epitelio/embriología , Epitelio/crecimiento & desarrollo , Epitelio/metabolismo , Femenino , Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Masculino , Ratones , Ratones Transgénicos , Modelos Biológicos , Embarazo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas S100/metabolismo , Proteínas Supresoras de Tumor , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo
6.
Trends Hear ; 192015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26631107

RESUMEN

Combined electric and acoustic stimulation has proven to be an effective strategy to improve hearing in some cochlear implant users. We describe an acoustic microactuator to directly deliver stimuli to the perilymph in the scala tympani. The 800 µm by 800 µm actuator has a silicon diaphragm driven by a piezoelectric thin film (e.g., lead-zirconium-titanium oxide or PZT). This device could also be used as a component of a bimodal acoustic-electric electrode array. In the current study, we established a guinea pig model to test the actuator for its ability to deliver auditory signals to the cochlea in vivo. The actuator was placed through the round window of the cochlea. Auditory brainstem response (ABR) thresholds, peak latencies, and amplitude growth were calculated for an ear canal speaker versus the intracochlear actuator for tone burst stimuli at 4, 8, 16, and 24 kHz. An ABR was obtained after removal of the probe to assess loss of hearing related to the procedure. In some animals, the temporal bone was harvested for histologic analysis of cochlear damage. We show that the device is capable of stimulating ABRs in vivo with latencies and growth functions comparable to stimulation in the ear canal. Further experiments will be necessary to evaluate the efficiency and safety of this modality in long-term auditory stimulation and its ability to be integrated with conventional cochlear implant arrays.


Asunto(s)
Estimulación Acústica/instrumentación , Estimulación Acústica/métodos , Implantes Cocleares , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Animales , Umbral Auditivo/fisiología , Implantación Coclear/métodos , Modelos Animales de Enfermedad , Femenino , Cobayas , Piezocirugía/métodos , Diseño de Prótesis , Distribución Aleatoria , Sensibilidad y Especificidad
7.
J Comp Neurol ; 463(2): 177-95, 2003 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-12815755

RESUMEN

Ototoxic drugs stimulate cell proliferation in adult rat vestibular sensory epithelia, as does the infusion of transforming growth factor alpha (TGFalpha) plus insulin. We sought to determine whether new hair cells can be regenerated by means of a mitotic pathway. Previously, studies have shown that the nuclei of some newly generated cells are located in the lumenal half of the sensory epithelium, suggesting that some may be newly generated sensory hair cells. The aim of this study was to examine the ultrastructural characteristics of newly proliferated cells after TGFalpha stimulation and/or aminoglycoside damage in the utricular sensory epithelium of the adult rat. The cell proliferation marker tritiated-thymidine was infused, with or without TGFalpha plus insulin, into the inner ears of normal or aminoglycoside-damaged rats for 3 or 7 days by means of osmotic pumps. Autoradiographic techniques and light microscopy were used to identify cells synthesizing DNA. Sections with labeled cells were re-embedded, processed for transmission electron microscopy, and the ultrastructural characteristics of the labeled cells were examined. The following five classes of tritiated-thymidine labeled cells were identified in the sensory epithelium: (1) labeled cells with synaptic specializations that appeared to be newly generated hair cells, (2) labeled supporting cells, (3) labeled leukocytes, (4) labeled cells that we have classified as "active cells" in that they are relatively nondescript but contain massive numbers of polyribosomes, and (5) labeled degenerating hair cells. These findings suggest that new hair cells can be generated in situ by means of a mitotic mechanism in the vestibular sensory epithelium of adult mammals.


Asunto(s)
Células Ciliadas Vestibulares/química , Células Ciliadas Vestibulares/ultraestructura , Timidina/metabolismo , Máculas Acústicas/química , Máculas Acústicas/ultraestructura , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Tritio/metabolismo
8.
J Assoc Res Otolaryngol ; 4(3): 422-43, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-14690060

RESUMEN

In humans, hair cell loss often leads to hearing and balance impairments. Hair cell replacement is vigorous and spontaneous in avians and nonmammalian vertebrates. In mammals, in contrast, it occurs at a very low rate, or not at all, presumably because of a very low level of supporting cell proliferation following injury. Heregulin (HRG), a member of the epidermal growth factor (EGF) family of growth factors, is reported to be a potent mitogen for neonatal rat vestibular sensory epithelium, but its effects in adults are unknown. We report here that HRG-alpha stimulates cell proliferation in organotypic cultures of neonatal, but not adult, mouse utricular sensory epithelia. Our findings support the idea that the proliferative capabilities of the adult mammalian vestibular sensory epithelia differ significantly from that seen in neonatal animals. Immunohistochemistry reveals that HRG-binding receptors (erbBs 2-4) and erbB1 are widely expressed in vestibular and auditory sensory epithelia in neonatal and adult mouse inner ear. The distribution of erbBs in the neonatal and adult mouse ear is consistent with the EGF receptor/ligand family regulating diverse cellular processes in the inner ear, including cell proliferation and differentiation.


Asunto(s)
Receptores ErbB/metabolismo , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/metabolismo , Neurregulina-1/farmacología , Factores de Edad , Animales , Animales Recién Nacidos , Anticuerpos , División Celular/efectos de los fármacos , Receptores ErbB/inmunología , Células Ciliadas Auditivas/efectos de los fármacos , Ratones , Mitógenos/farmacología , Técnicas de Cultivo de Órganos , Órgano Espiral/citología , Órgano Espiral/fisiología , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Receptor ErbB-3/inmunología , Receptor ErbB-3/metabolismo , Receptor ErbB-4 , Regeneración/efectos de los fármacos , Sáculo y Utrículo/citología , Sáculo y Utrículo/fisiología , Vestíbulo del Laberinto/citología , Vestíbulo del Laberinto/fisiología
9.
Hear Res ; 297: 91-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23178236

RESUMEN

Auditory hair cells transduce sound vibrations into membrane potential changes, ultimately leading to changes in neuronal firing and sound perception. This review provides an overview of the characteristics and repair capabilities of traumatized auditory sensory epithelium in the adult vertebrate ear. Injured mammalian auditory epithelium repairs itself by forming permanent scars but is unable to regenerate replacement hair cells. In contrast, injured non-mammalian vertebrate ear generates replacement hair cells to restore hearing functions. Non-sensory support cells within the auditory epithelium play key roles in the repair processes.


Asunto(s)
Oído Interno/fisiología , Epitelio/patología , Células Ciliadas Auditivas/fisiología , Regeneración Nerviosa/fisiología , Regeneración/fisiología , Heridas y Lesiones , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Oído Interno/fisiopatología , Audición , Pérdida Auditiva Provocada por Ruido/fisiopatología , Humanos , Potenciales de la Membrana , Órgano Espiral/fisiopatología , Ganglio Espiral de la Cóclea/patología , Trasplante de Células Madre/métodos , Vertebrados/fisiología
10.
Cell Cycle ; 10(8): 1237-48, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21403466

RESUMEN

Cell cycle inhibitors, such as the cyclin-dependent kinase (Cdk) inhibitor proteins and retinoblastoma (Rb) family members, control exit from the cell cycle during the development of a variety of terminally differentiated tissues. It is unclear whether sustained expression of these proteins is required to prevent cell cycle re-entry in quiescent and terminally differentiated cells. The organ of Corti (cochlear sensory epithelium) and pars intermedia (intermediate lobe of the pituitary) are two tissues that share the characteristic of ongoing cell division in mice lacking either the p27(Kip1) Cdk inhibitor, Ink4 proteins, or Rb. Here, we use tamoxifen-inducible mouse models to delete p27(Kip1) in postnatal animals and show this is sufficient to induce proliferation in both the organ of Corti and pars intermedia. Thus, these tissues remain sensitive to the presence of p27(Kip1) even after their developmental exit from the cell cycle. The neonatal cochlea displayed heightened sensitivity to changes in p27(Kip1) expression, with a proliferative response higher than that of constitutive null mice. In adults, the proliferative response was reduced but was accompanied by increased cell survival. In contrast, re-establishment of normal p27(Kip1) expression in animals with established pituitary tumors, in an inducible "knock-on" model, led to cessation of pituitary tumor growth, indicating the cells had maintained their susceptibility to p27-mediated growth suppression. Although restoration of p27(Kip1) did not induce apoptosis, it did lead to resolution of pathological features and normalization of gene expression. Our data underscore the importance of p27(Kip1) expression in the maintenance of cellular quiescence and terminal differentiation.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Neoplasias Experimentales/metabolismo , Órgano Espiral/metabolismo , Adenohipófisis Porción Intermedia/metabolismo , Animales , Animales Recién Nacidos , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , División Celular/efectos de los fármacos , Supervivencia Celular , Pollos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/genética , Ciclinas/genética , Ciclinas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Neoplasias Experimentales/inducido químicamente , Neoplasias Experimentales/genética , Órgano Espiral/citología , Órgano Espiral/embriología , Organogénesis , Adenohipófisis Porción Intermedia/embriología , Adenohipófisis Porción Intermedia/patología , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Tamoxifeno/farmacología
11.
Dev Neurobiol ; 70(4): 253-67, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20095043

RESUMEN

Usher syndrome is the leading cause of combined deaf-blindness, but the molecular mechanisms underlying the auditory and visual impairment are poorly understood. Usher I is characterized by profound congenital hearing loss, vestibular dysfunction, and progressive retinitis pigmentosa beginning in early adolescence. Using the c.216G>A cryptic splice site mutation in Exon 3 of the USH1C gene found in Acadian Usher I patients in Louisiana, we constructed the first mouse model that develops both deafness and retinal degeneration. The same truncated mRNA transcript found in Usher 1C patients is found in the cochleae and retinas of these knock-in mice. Absent auditory-evoked brainstem responses indicated that the mutant mice are deaf at 1 month of age. Cochlear histology showed disorganized hair cell rows, abnormal bundles, and loss of both inner and outer hair cells in the middle turns and at the base. Retinal dysfunction as evident by an abnormal electroretinogram was seen as early as 1 month of age, with progressive loss of rod photoreceptors between 6 and 12 months of age. This knock-in mouse reproduces the dual sensory loss of human Usher I, providing a novel resource to study the disease mechanism and the development of therapies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Sordera/fisiopatología , Modelos Animales de Enfermedad , Degeneración Retiniana/fisiopatología , Síndromes de Usher/fisiopatología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Envejecimiento , Animales , Proteínas de Ciclo Celular , Cóclea/patología , Cóclea/fisiopatología , Cóclea/ultraestructura , Proteínas del Citoesqueleto , Sordera/patología , Electrorretinografía , Potenciales Evocados Auditivos del Tronco Encefálico , Exones , Técnicas de Sustitución del Gen , Células Ciliadas Auditivas/patología , Células Ciliadas Auditivas/fisiología , Louisiana , Ratones , Ratones Transgénicos , Mutación Missense , Sitios de Empalme de ARN , ARN Mensajero/metabolismo , Retina/patología , Retina/fisiopatología , Degeneración Retiniana/patología , Células Fotorreceptoras Retinianas Bastones/patología , Células Fotorreceptoras Retinianas Bastones/fisiología , Síndromes de Usher/patología
12.
J Assoc Res Otolaryngol ; 10(4): 525-44, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19644644

RESUMEN

Significant sensory hair cell loss leads to irreversible hearing and balance deficits in humans and other mammals. Future therapeutic strategies to repair damaged mammalian auditory epithelium may involve inserting stem cells into the damaged epithelium, inducing non-sensory cells remaining in the epithelium to transdifferentiate into replacement hair cells via gene therapy, or applying growth factors. Little is currently known regarding the status and characteristics of the non-sensory cells that remain in the deafened auditory epithelium, yet this information is integral to the development of therapeutic treatments. A single high-dose injection of the aminoglycoside kanamycin coupled with a single injection of the loop diuretic furosemide was used to kill hair cells in adult mice, and the mice were examined 1 year after the drug insult. Outer hair cells are lost throughout the entire length of the cochlea and less than a third of the inner hair cells remain in the apical turn. Over 20% and 55% of apical organ of Corti support cells and spiral ganglion cells are lost, respectively. We examined the expression of several known support cell markers to investigate for possible support cell dedifferentiation in the damaged ears. The support cell markers investigated included the microtubule protein acetylated tubulin, the transcription factor Sox2, and the Notch signaling ligand Jagged1. Non-sensory epithelial cells remaining in the organ of Corti retain acetylated tubulin, Sox2 and Jagged1 expression, even when the epithelium has a monolayer-like appearance. These results suggest a lack of marked SC dedifferentiation in these aged and badly damaged ears.


Asunto(s)
Sordera/patología , Células Laberínticas de Soporte/citología , Envejecimiento/patología , Animales , Biomarcadores/análisis , Biomarcadores/metabolismo , Proteínas de Unión al Calcio/análisis , Proteínas de Unión al Calcio/biosíntesis , Diferenciación Celular , Sordera/inducido químicamente , Sordera/metabolismo , Diuréticos/administración & dosificación , Diuréticos/efectos adversos , Furosemida/administración & dosificación , Furosemida/efectos adversos , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Humanos , Péptidos y Proteínas de Señalización Intercelular/análisis , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Proteína Jagged-1 , Kanamicina/administración & dosificación , Kanamicina/efectos adversos , Células Laberínticas de Soporte/efectos de los fármacos , Células Laberínticas de Soporte/metabolismo , Proteínas de la Membrana/análisis , Proteínas de la Membrana/biosíntesis , Ratones , Inhibidores de la Síntesis de la Proteína/administración & dosificación , Inhibidores de la Síntesis de la Proteína/efectos adversos , Factores de Transcripción SOXB1/análisis , Factores de Transcripción SOXB1/biosíntesis , Proteínas Serrate-Jagged , Ganglio Espiral de la Cóclea/efectos de los fármacos , Ganglio Espiral de la Cóclea/patología , Tubulina (Proteína)/análisis , Tubulina (Proteína)/biosíntesis
13.
Hear Res ; 252(1-2): 61-70, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19450430

RESUMEN

Estrogen signaling in auditory and vestibular sensory epithelia is a newly emerging focus propelled by the role of estrogen signaling in many other proliferative systems. Understanding the pathways with which estrogen interacts can provide a means to identify how estrogen may modulate proliferative signaling in inner ear sensory epithelia. Reviewed herein are two signaling families, EGF and TGFbeta. Both pathways are involved in regulating proliferation of supporting cells in mature vestibular sensory epithelia and have well characterized interactions with estrogen signaling in other systems. It is becoming increasingly clear that elucidating the complexity of signaling in regeneration will be necessary for development of therapeutics that can initiate regeneration and prevent progression to a pathogenic state.


Asunto(s)
Oído Interno/fisiología , Estrógenos/fisiología , Regeneración/fisiología , Animales , Proliferación Celular , Células Madre Embrionarias/fisiología , Factor de Crecimiento Epidérmico/fisiología , Receptores ErbB/fisiología , Femenino , Humanos , Masculino , Modelos Biológicos , Receptores de Estrógenos/fisiología , Transducción de Señal , Factor de Crecimiento Transformador alfa/fisiología , Factor de Crecimiento Transformador beta/fisiología
14.
J Assoc Res Otolaryngol ; 9(1): 65-89, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18157569

RESUMEN

Inner ear hair cells detect environmental signals associated with hearing, balance, and body orientation. In humans and other mammals, significant hair cell loss leads to irreversible hearing and balance deficits, whereas hair cell loss in nonmammalian vertebrates is repaired by the spontaneous generation of replacement hair cells. Research in mammalian hair cell regeneration is hampered by the lack of in vivo damage models for the adult mouse inner ear and the paucity of cell-type-specific markers for non-sensory cells within the sensory receptor epithelia. The present study delineates a protocol to drug damage the adult mouse auditory epithelium (organ of Corti) in situ and uses this protocol to investigate Sox2 and Jagged1 expression in damaged inner ear sensory epithelia. In other tissues, the transcription factor Sox2 and a ligand member of the Notch signaling pathway, Jagged1, are involved in regenerative processes. Both are involved in early inner ear development and are expressed in developing support cells, but little is known about their expressions in the adult. We describe a nonsurgical technique for inducing hair cell damage in adult mouse organ of Corti by a single high-dose injection of the aminoglycoside kanamycin followed by a single injection of the loop diuretic furosemide. This drug combination causes the rapid death of outer hair cells throughout the cochlea. Using immunocytochemical techniques, Sox2 is shown to be expressed specifically in support cells in normal adult mouse inner ear and is not affected by drug damage. Sox2 is absent from auditory hair cells, but is expressed in a subset of vestibular hair cells. Double-labeling experiments with Sox2 and calbindin suggest Sox2-positive hair cells are Type II. Jagged1 is also expressed in support cells in the adult ear and is not affected by drug damage. Sox2 and Jagged1 may be involved in the maintenance of support cells in adult mouse inner ear.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Órgano Espiral/metabolismo , Factores de Transcripción SOXB1/metabolismo , Animales , Animales Recién Nacidos , Antibacterianos/toxicidad , Biomarcadores/metabolismo , Pollos , Enfermedades Cocleares/inducido químicamente , Modelos Animales de Enfermedad , Diuréticos/toxicidad , Furosemida/toxicidad , Proteína Jagged-1 , Kanamicina/toxicidad , Ratones , Ratones Endogámicos CBA , Órgano Espiral/efectos de los fármacos , Proteínas Serrate-Jagged , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA