Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Neurocase ; 20(1): 100-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23171151

RESUMEN

We describe a patient with semantic variant of frontotemporal dementia who received longitudinal clinical evaluations and structural MRI scans and subsequently came to autopsy. She presented with early behavior changes and semantic loss for foods and people and ultimately developed a pervasive semantic impairment affecting social-emotional as well as linguistic domains. Imaging revealed predominant atrophy of the right temporal lobe, with later involvement of the left, and pathology confirmed bilateral temporal involvement. Findings support the view that left and right anterior temporal lobes serve as semantic hubs that may be affected differentially in semantic variant by early, relatively unilateral damage.


Asunto(s)
Demencia Frontotemporal/diagnóstico , Lóbulo Temporal/patología , Anciano , Femenino , Humanos , Estudios Longitudinales , Pruebas Neuropsicológicas
2.
Brain ; 134(Pt 10): 3011-29, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21666264

RESUMEN

Primary progressive aphasia is a clinical syndrome that encompasses three major phenotypes: non-fluent/agrammatic, semantic and logopenic. These clinical entities have been associated with characteristic patterns of focal grey matter atrophy in left posterior frontoinsular, anterior temporal and left temporoparietal regions, respectively. Recently, network-level dysfunction has been hypothesized but research to date has focused largely on studying grey matter damage. The aim of this study was to assess the integrity of white matter tracts in the different primary progressive aphasia subtypes. We used diffusion tensor imaging in 48 individuals: nine non-fluent, nine semantic, nine logopenic and 21 age-matched controls. Probabilistic tractography was used to identify bilateral inferior longitudinal (anterior, middle, posterior) and uncinate fasciculi (referred to as the ventral pathway); and the superior longitudinal fasciculus segmented into its frontosupramarginal, frontoangular, frontotemporal and temporoparietal components, (referred to as the dorsal pathway). We compared the tracts' mean fractional anisotropy, axial, radial and mean diffusivities for each tract in the different diagnostic categories. The most prominent white matter changes were found in the dorsal pathways in non-fluent patients, in the two ventral pathways and the temporal components of the dorsal pathways in semantic variant, and in the temporoparietal component of the dorsal bundles in logopenic patients. Each of the primary progressive aphasia variants showed different patterns of diffusion tensor metrics alterations: non-fluent patients showed the greatest changes in fractional anisotropy and radial and mean diffusivities; semantic variant patients had severe changes in all metrics; and logopenic patients had the least white matter damage, mainly involving diffusivity, with fractional anisotropy altered only in the temporoparietal component of the dorsal pathway. This study demonstrates that both careful dissection of the main language tracts and consideration of all diffusion tensor metrics are necessary to characterize the white matter changes that occur in the variants of primary progressive aphasia. These results highlight the potential value of diffusion tensor imaging as a new tool in the multimodal diagnostic evaluation of primary progressive aphasia.


Asunto(s)
Afasia Progresiva Primaria/patología , Encéfalo/patología , Fibras Nerviosas Mielínicas/patología , Red Nerviosa/patología , Anciano , Afasia Progresiva Primaria/psicología , Atrofia , Mapeo Encefálico , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas
3.
J Neurosci ; 30(50): 16845-54, 2010 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21159955

RESUMEN

The left posterior inferior frontal cortex (IFC) is important for syntactic processing, and has been shown in many functional imaging studies to be differentially recruited for the processing of syntactically complex sentences relative to simpler ones. In the nonfluent variant of primary progressive aphasia (PPA), degeneration of the posterior IFC is associated with expressive and receptive agrammatism; however, the functional status of this region in nonfluent PPA is not well understood. Our objective was to determine whether the atrophic posterior IFC is differentially recruited for the processing of syntactically complex sentences in nonfluent PPA. Using structural and functional magnetic resonance imaging, we quantified tissue volumes and functional responses to a syntactic comprehension task in eight patients with nonfluent PPA, compared to healthy age-matched controls. In controls, the posterior IFC showed more activity for syntactically complex sentences than simpler ones, as expected. In nonfluent PPA patients, the posterior IFC was atrophic and, unlike controls, showed an equivalent level of functional activity for syntactically complex and simpler sentences. This abnormal pattern of functional activity was specific to the posterior IFC: the mid-superior temporal sulcus, another region modulated by syntactic complexity in controls, showed normal modulation by complexity in patients. A more anterior inferior frontal region was recruited by patients, but did not support successful syntactic processing. We conclude that in nonfluent PPA, the posterior IFC is not only structurally damaged, but also functionally abnormal, suggesting a critical role for this region in the breakdown of syntactic processing in this syndrome.


Asunto(s)
Comprensión/fisiología , Lóbulo Frontal/patología , Lóbulo Frontal/fisiopatología , Lenguaje , Afasia Progresiva Primaria no Fluente/fisiopatología , Percepción del Habla , Anciano , Atrofia/patología , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Lóbulo Temporal/fisiología
4.
Brain ; 133(Pt 1): 286-99, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19759202

RESUMEN

Cognitive deficits in semantic dementia have been attributed to anterior temporal lobe grey matter damage; however, key aspects of the syndrome could be due to altered anatomical connectivity between language pathways involving the temporal lobe. The aim of this study was to investigate the left language-related cerebral pathways in semantic dementia using diffusion tensor imaging-based tractography and to combine the findings with cortical anatomical and functional magnetic resonance imaging data obtained during a reading activation task. The left inferior longitudinal fasciculus, arcuate fasciculus and fronto-parietal superior longitudinal fasciculus were tracked in five semantic dementia patients and eight healthy controls. The left uncinate fasciculus and the genu and splenium of the corpus callosum were also obtained for comparison with previous studies. From each tract, mean diffusivity, fractional anisotropy, as well as parallel and transverse diffusivities were obtained. Diffusion tensor imaging results were related to grey and white matter atrophy volume assessed by voxel-based morphometry and functional magnetic resonance imaging activations during a reading task. Semantic dementia patients had significantly higher mean diffusivity, parallel and transverse in the inferior longitudinal fasciculus. The arcuate and uncinate fasciculi demonstrated significantly higher mean diffusivity, parallel and transverse and significantly lower fractional anisotropy. The fronto-parietal superior longitudinal fasciculus was relatively spared, with a significant difference observed for transverse diffusivity and fractional anisotropy, only. In the corpus callosum, the genu showed lower fractional anisotropy compared with controls, while no difference was found in the splenium. The left parietal cortex did not show significant volume changes on voxel-based morphometry and demonstrated normal functional magnetic resonance imaging activation in response to reading items that stress sublexical phonological processing. This study shows that semantic dementia is associated with anatomical damage to the major superior and inferior temporal white matter connections of the left hemisphere likely involved in semantic and lexical processes, with relative sparing of the fronto-parietal superior longitudinal fasciculus. Fronto-parietal regions connected by this tract were activated normally in the same patients during sublexical reading. These findings contribute to our understanding of the anatomical changes that occur in semantic dementia, and may further help to explain the dissociation between marked single-word and object knowledge deficits, but sparing of phonology and fluency in semantic dementia.


Asunto(s)
Degeneración Lobar Frontotemporal/fisiopatología , Lenguaje , Red Nerviosa/fisiología , Anciano , Cuerpo Calloso/patología , Cuerpo Calloso/fisiología , Femenino , Degeneración Lobar Frontotemporal/patología , Humanos , Masculino , Persona de Mediana Edad , Fibras Nerviosas Mielínicas/patología , Fibras Nerviosas Mielínicas/fisiología , Red Nerviosa/patología , Plasticidad Neuronal/fisiología , Semántica
5.
Brain ; 133(Pt 7): 2069-88, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20542982

RESUMEN

Primary progressive aphasia is a clinical syndrome defined by progressive deficits isolated to speech and/or language, and can be classified into non-fluent, semantic and logopenic variants based on motor speech, linguistic and cognitive features. The connected speech of patients with primary progressive aphasia has often been dichotomized simply as 'fluent' or 'non-fluent', however fluency is a multidimensional construct that encompasses features such as speech rate, phrase length, articulatory agility and syntactic structure, which are not always impacted in parallel. In this study, our first objective was to improve the characterization of connected speech production in each variant of primary progressive aphasia, by quantifying speech output along a number of motor speech and linguistic dimensions simultaneously. Secondly, we aimed to determine the neuroanatomical correlates of changes along these different dimensions. We recorded, transcribed and analysed speech samples for 50 patients with primary progressive aphasia, along with neurodegenerative and normal control groups. Patients were scanned with magnetic resonance imaging, and voxel-based morphometry was used to identify regions where atrophy correlated significantly with motor speech and linguistic features. Speech samples in patients with the non-fluent variant were characterized by slow rate, distortions, syntactic errors and reduced complexity. In contrast, patients with the semantic variant exhibited normal rate and very few speech or syntactic errors, but showed increased proportions of closed class words, pronouns and verbs, and higher frequency nouns, reflecting lexical retrieval deficits. In patients with the logopenic variant, speech rate (a common proxy for fluency) was intermediate between the other two variants, but distortions and syntactic errors were less common than in the non-fluent variant, while lexical access was less impaired than in the semantic variant. Reduced speech rate was linked with atrophy to a wide range of both anterior and posterior language regions, but specific deficits had more circumscribed anatomical correlates. Frontal regions were associated with motor speech and syntactic processes, anterior and inferior temporal regions with lexical retrieval, and posterior temporal regions with phonological errors and several other types of disruptions to fluency. These findings demonstrate that a multidimensional quantification of connected speech production is necessary to characterize the differences between the speech patterns of each primary progressive aphasic variant adequately, and to reveal associations between particular aspects of connected speech and specific components of the neural network for speech production.


Asunto(s)
Afasia Progresiva Primaria/diagnóstico , Demencia Frontotemporal/diagnóstico , Medición de la Producción del Habla , Habla , Anciano , Afasia Progresiva Primaria/complicaciones , Afasia Progresiva Primaria/fisiopatología , Mapeo Encefálico/métodos , Femenino , Demencia Frontotemporal/complicaciones , Demencia Frontotemporal/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Habla/fisiología , Medición de la Producción del Habla/métodos
6.
Brain ; 132(Pt 1): 71-86, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19022856

RESUMEN

Semantic dementia (SD) is a neurodegenerative disease characterized by atrophy of anterior temporal regions and progressive loss of semantic memory. SD patients often present with surface dyslexia, a relatively selective impairment in reading low-frequency words with exceptional or atypical spelling-to-sound correspondences. Exception words are typically 'over-regularized' in SD and pronounced as they are spelled (e.g. 'sew' is pronounced as 'sue'). This suggests that in the absence of sufficient item-specific knowledge, exception words are read by relying mainly on subword processes for regular mapping of orthography to phonology. In this study, we investigated the functional anatomy of surface dyslexia in SD using functional magnetic resonance imaging (fMRI) and studied its relationship to structural damage with voxel-based morphometry (VBM). Five SD patients and nine healthy age-matched controls were scanned while they read regular words, exception words and pseudowords in an event-related design. Vocal responses were recorded and revealed that all patients were impaired in reading low-frequency exception words, and made frequent over-regularization errors. Consistent with prior studies, fMRI data revealed that both groups activated a similar basic network of bilateral occipital, motor and premotor regions for reading single words. VBM showed that these regions were not significantly atrophied in SD. In control subjects, a region in the left intraparietal sulcus was activated for reading pseudowords and low-frequency regular words but not exception words, suggesting a role for this area in subword mapping from orthographic to phonological representations. In SD patients only, this inferior parietal region, which was not atrophied, was also activated by reading low-frequency exception words, especially on trials where over-regularization errors occurred. These results suggest that the left intraparietal sulcus is involved in subword reading processes that are differentially recruited in SD when word-specific information is lost. This loss is likely related to degeneration of the anterior temporal lobe, which was severely atrophied in SD. Consistent with this, left mid-fusiform and superior temporal regions that showed reading-related activations in controls were not activated in SD. Taken together, these results suggest that the left inferior parietal region subserves subword orthographic-to-phonological processes that are recruited for exception word reading when retrieval of exceptional, item-specific word forms is impaired by degeneration of the anterior temporal lobe.


Asunto(s)
Demencia/psicología , Dislexia/etiología , Anciano , Atrofia , Encéfalo/patología , Mapeo Encefálico/métodos , Estudios de Casos y Controles , Demencia/patología , Demencia/fisiopatología , Dislexia/patología , Dislexia/fisiopatología , Femenino , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Lóbulo Parietal/patología , Lóbulo Parietal/fisiopatología , Tiempo de Reacción , Lectura , Lóbulo Temporal/patología , Lóbulo Temporal/fisiopatología
7.
Neuroimage ; 47(4): 1558-67, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19501654

RESUMEN

Degeneration of language regions in the dominant hemisphere can result in primary progressive aphasia (PPA), a clinical syndrome characterized by progressive deficits in speech and/or language function. Recent studies have identified three variants of PPA: progressive non-fluent aphasia (PNFA), semantic dementia (SD) and logopenic progressive aphasia (LPA). Each variant is associated with characteristic linguistic features, distinct patterns of brain atrophy, and different likelihoods of particular underlying pathogenic processes, which makes correct differential diagnosis highly clinically relevant. Evaluation of linguistic behavior can be challenging for non-specialists, and neuroimaging findings in single subjects are often difficult to evaluate by eye. We investigated the utility of automated structural MR image analysis to discriminate PPA variants (N=86) from each other and from normal controls (N=115). T1 images were preprocessed to obtain modulated grey matter (GM) images. Feature selection was performed with principal components analysis (PCA) on GM images as well as images of lateralized atrophy. PC coefficients were classified with linear support vector machines, and a cross-validation scheme was used to obtain accuracy rates for generalization to novel cases. The overall mean accuracy in discriminating between pairs of groups was 92.2%. For one pair of groups, PNFA and SD, we also investigated the utility of including several linguistic variables as features. Models with both imaging and linguistic features performed better than models with only imaging or only linguistic features. These results suggest that automated methods could assist in the differential diagnosis of PPA variants, enabling therapies to be targeted to likely underlying etiologies.


Asunto(s)
Afasia/clasificación , Afasia/diagnóstico , Inteligencia Artificial , Encéfalo/patología , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Anciano , Algoritmos , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
8.
Ann Neurol ; 64(4): 388-401, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18991338

RESUMEN

OBJECTIVE: Alzheimer's disease (AD) is found at autopsy in up to one third of patients with primary progressive aphasia (PPA), but clinical features that predict AD pathology in PPA are not well defined. We studied the relationships between language presentation, Abeta amyloidosis, and glucose metabolism in three PPA variants using [11C]-Pittsburgh compound B ([11C]PIB) and [18F]-labeled fluorodeoxyglucose positron emission tomography ([18F]FDG-PET). METHODS: Patients meeting PPA criteria (N = 15) were classified as logopenic aphasia (LPA), progressive nonfluent aphasia (PNFA), or semantic dementia (SD) based on language testing. [11C]PIB distribution volume ratios were calculated using Logan graphical analysis (cerebellar reference). [18F]FDG images were normalized to pons. Partial volume correction was applied. RESULTS: Elevated cortical PIB (by visual inspection) was more common in LPA (4/4 patients) than in PNFA (1/6) and SD (1/5) (p < 0.02). In PIB-positive PPA, PIB uptake was diffuse and indistinguishable from the pattern in matched AD patients (n = 10). FDG patterns were focal and varied by PPA subtype, with left temporoparietal hypometabolism in LPA, left frontal hypometabolism in PNFA, and left anterior temporal hypometabolism in SD. FDG uptake was significant asymmetric (favoring left hypometabolism) in PPA (p < 0.005) but not in AD. INTERPRETATION: LPA is associated with Abeta amyloidosis, suggesting that subclassification of PPA based on language features can help predict the likelihood of AD pathology. Language phenotype in PPA is closely related to metabolic changes that are focal and anatomically distinct between subtypes, but not to amyloid deposition patterns that are diffuse and similar to AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Afasia Progresiva Primaria/clasificación , Afasia Progresiva Primaria/metabolismo , Glucosa/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Análisis de Varianza , Compuestos de Anilina/metabolismo , Afasia Progresiva Primaria/diagnóstico por imagen , Isótopos de Carbono/metabolismo , Demencia/diagnóstico por imagen , Demencia/metabolismo , Femenino , Fluorodesoxiglucosa F18/metabolismo , Humanos , Procesamiento de Imagen Asistido por Computador , Lenguaje , Pruebas del Lenguaje , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos , Tiazoles/metabolismo
9.
Behav Neurol ; 17(2): 77-87, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16873918

RESUMEN

We present a review of the literature on Primary Progressive Aphasia (PPA) together with the analysis of neuropschychological and neuroradiologic profiles of 42 PPA patients. Mesulam originally defined PPA as a progressive degenerative disorder characterized by isolated language impairment for at least two years. The most common variants of PPA are: 1) Progressive nonfluent aphasia (PNFA), 2) semantic dementia (SD), 3) logopenic progressive aphasia (LPA). PNFA is characterized by labored speech, agrammatism in production, and/or comprehension. In some cases the syndrome begins with isolated deficits in speech. SD patients typically present with loss of word and object meaning and surface dyslexia. LPA patients have word-finding difficulties, syntactically simple but accurate language output and impaired sentence comprehension. The neuropsychological data demonstrated that SD patients show the most characteristic pattern of impairment, while PNFA and LPA overlap within many cognitive domains. The neuroimaging analysis showed left perisylvian region involvement. A comprehensive cognitive, neuroimaging and pathological approach is necessary to identify the clinical and pathogenetic features of different PPA variants.


Asunto(s)
Afasia Progresiva Primaria/diagnóstico , Anciano , Afasia/diagnóstico , Afasia/epidemiología , Afasia Progresiva Primaria/epidemiología , Afasia Progresiva Primaria/fisiopatología , Encéfalo/anatomía & histología , Encéfalo/fisiopatología , Diagnóstico Diferencial , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Trastornos Mentales/epidemiología , Persona de Mediana Edad
10.
Brain Lang ; 136: 58-68, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25129631

RESUMEN

Inflectional morphology lies at the intersection of phonology, syntax and the lexicon, three language domains that are differentially impacted in the three main variants of primary progressive aphasia (PPA). To characterize spared and impaired aspects of inflectional morphology in PPA, we elicited inflectional morphemes in 48 individuals with PPA and 13 healthy age-matched controls. We varied the factors of regularity, frequency, word class, and lexicality, and used voxel-based morphometry to identify brain regions where atrophy was predictive of deficits on particular conditions. All three PPA variants showed deficits in inflectional morphology, with the specific nature of the deficits dependent on the anatomical and linguistic features of each variant. Deficits in inflecting low-frequency irregular words were associated with semantic PPA, with lexical/semantic deficits, and with left temporal atrophy. Deficits in inflecting pseudowords were associated with non-fluent/agrammatic and logopenic variants, with phonological deficits, and with left frontal and parietal atrophy.


Asunto(s)
Afasia Progresiva Primaria/patología , Afasia Progresiva Primaria/fisiopatología , Encéfalo/patología , Encéfalo/fisiopatología , Fonética , Semántica , Acústica del Lenguaje , Anciano , Análisis de Varianza , Atrofia/patología , Femenino , Lóbulo Frontal/patología , Lóbulo Frontal/fisiopatología , Lateralidad Funcional/fisiología , Humanos , Lenguaje , Masculino , Persona de Mediana Edad , Lóbulo Parietal/patología , Lóbulo Parietal/fisiopatología , Medición de la Producción del Habla
11.
Neuropsychology ; 25(1): 98-104, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21090900

RESUMEN

OBJECTIVE: Individuals with semantic dementia (SD) have impaired autobiographical memory (AM), but the extent of the impairment has been controversial. According to one report (Westmacott, Leach, Freedman, & Moscovitch, 2001), patient performance was better when visual cues were used instead of verbal cues; however, the visual cues used in that study (family photographs) provided more retrieval support than do the word cues that are typically used in AM studies. In the present study, we sought to disentangle the effects of retrieval support and cue modality. METHOD: We cued AMs of 5 patients with SD and 5 controls with words, simple pictures, and odors. Memories were elicited from childhood, early adulthood, and recent adulthood; they were scored for level of detail and episodic specificity. RESULTS: The patients were impaired across all time periods and stimulus modalities. Within the patient group, words and pictures were equally effective as cues (Friedman test; χ² = 0.25, p = .61), whereas odors were less effective than both words and pictures (for words vs. odors, χ² = 7.83, p = .005; for pictures vs. odors, χ² = 6.18, p = .01). There was no evidence of a temporal gradient in either group (for patients with SD, χ² = 0.24, p = .89; for controls, χ² < 2.07, p = .35). CONCLUSIONS: Once the effect of retrieval support is equated across stimulus modalities, there is no evidence for an advantage of visual cues over verbal cues. The greater impairment for olfactory cues presumably reflects degeneration of anterior temporal regions that support olfactory memory.


Asunto(s)
Señales (Psicología) , Degeneración Lobar Frontotemporal/complicaciones , Trastornos de la Memoria/etiología , Recuerdo Mental/fisiología , Anciano , Femenino , Degeneración Lobar Frontotemporal/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Odorantes , Vías Olfatorias/fisiopatología , Estimulación Luminosa/métodos
12.
Neuron ; 72(2): 397-403, 2011 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-22017996

RESUMEN

Frontal and temporal language areas involved in syntactic processing are connected by several dorsal and ventral tracts, but the functional roles of the different tracts are not well understood. To identify which white matter tract(s) are important for syntactic processing, we examined the relationship between white matter damage and syntactic deficits in patients with primary progressive aphasia, using multimodal neuroimaging and neurolinguistic assessment. Diffusion tensor imaging showed that microstructural damage to left hemisphere dorsal tracts--the superior longitudinal fasciculus including its arcuate component--was strongly associated with deficits in comprehension and production of syntax. Damage to these dorsal tracts predicted syntactic deficits after gray matter atrophy was taken into account, and fMRI confirmed that these tracts connect regions modulated by syntactic processing. In contrast, damage to ventral tracts--the extreme capsule fiber system or the uncinate fasciculus--was not associated with syntactic deficits. Our findings show that syntactic processing depends primarily on dorsal language tracts.


Asunto(s)
Afasia Progresiva Primaria/patología , Fibras Nerviosas Mielínicas/patología , Anciano , Anciano de 80 o más Años , Afasia Progresiva Primaria/fisiopatología , Atrofia/patología , Atrofia/fisiopatología , Mapeo Encefálico , Imagen de Difusión Tensora , Femenino , Humanos , Lenguaje , Pruebas del Lenguaje , Masculino , Persona de Mediana Edad , Fibras Nerviosas Mielínicas/fisiología , Neuroimagen , Semántica
13.
Alzheimer Dis Assoc Disord ; 21(4): S23-30, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18090419

RESUMEN

Progressive nonfluent aphasia (PNFA) is a clinical syndrome characterized by motor speech impairment and agrammatism, with relative sparing of single word comprehension and semantic memory. PNFA has been associated with the characteristic pattern of left anterior insular and posterior frontal atrophy, including the motor and premotor regions and Broca's area. Postmortem histopathologic evidence has shown that PNFA is usually associated with tau pathology, although focal Alzheimer disease pathology and tau-negative, ubiquitin-TDP-43 inclusions also have been reported in association with this clinical syndrome. We performed a detailed analysis of motor speech errors in 18 patients with PNFA and investigated their neural correlates using voxel-based morphometry on magnetic resonance imaging scans. Seven patients demonstrated only apraxia of speech (AOS) errors, whereas 11 showed AOS along with dysarthria. Slow rate of speech, effortful articulation with groping, and consonant distortions were the most common AOS errors. Hypernasality was the most represented dysarthric feature and dysarthria was most often classified as spastic, hypokinetic, or mixed spastic-hypokinetic. Neuroimaging results demonstrated that patients with AOS-only and AOS plus dysarthria showed atrophy in the left posterior frontal, anterior insular, and basal ganglia regions when compared with controls. Patients with AOS plus dysarthria showed greater damage than patients with AOS-only in the left face portion of primary motor cortex and left caudate. PNFA is a distinct frontotemporal lobar degeneration clinical syndrome associated with characteristic clinical, neuroimaging, and pathologic features. The clinical features are driven by the severity of left frontal and caudate damage.


Asunto(s)
Afasia Progresiva Primaria/patología , Afasia Progresiva Primaria/fisiopatología , Mapeo Encefálico , Disartria/patología , Disartria/fisiopatología , Anciano , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Grabación en Video
14.
Ann Neurol ; 55(3): 335-46, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14991811

RESUMEN

We performed a comprehensive cognitive, neuroimaging, and genetic study of 31 patients with primary progressive aphasia (PPA), a decline in language functions that remains isolated for at least 2 years. Detailed speech and language evaluation was used to identify three different clinical variants: nonfluent progressive aphasia (NFPA; n = 11), semantic dementia (SD; n = 10), and a third variant termed logopenic progressive aphasia (LPA; n = 10). Voxel-based morphometry (VBM) on MRIs showed that, when all 31 PPA patients were analyzed together, the left perisylvian region and the anterior temporal lobes were atrophied. However, when each clinical variant was considered separately, distinctive patterns emerged: (1) NFPA, characterized by apraxia of speech and deficits in processing complex syntax, was associated with left inferior frontal and insular atrophy; (2) SD, characterized by fluent speech and semantic memory deficits, was associated with anterior temporal damage; and (3) LPA, characterized by slow speech and impaired syntactic comprehension and naming, showed atrophy in the left posterior temporal cortex and inferior parietal lobule. Apolipoprotein E epsilon4 haplotype frequency was 20% in NFPA, 0% in SD, and 67% in LPA. Cognitive, genetic, and anatomical features indicate that different PPA clinical variants may correspond to different underlying pathological processes.


Asunto(s)
Afasia de Broca/etiología , Afasia Progresiva Primaria/fisiopatología , Cognición/fisiología , Demencia/etiología , Anciano , Anciano de 80 o más Años , Anatomía/métodos , Afasia de Broca/patología , Afasia Progresiva Primaria/clasificación , Afasia Progresiva Primaria/genética , Afasia Progresiva Primaria/patología , Apolipoproteína E4 , Apolipoproteínas E/genética , Encéfalo/patología , Demencia/patología , Femenino , Lateralidad Funcional , Frecuencia de los Genes , Humanos , Lenguaje , Imagen por Resonancia Magnética/métodos , Masculino , Memoria/fisiología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Psicometría , Semántica , Habla/fisiología , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA