Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 175(7): 1972-1988.e16, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30550791

RESUMEN

In vitro cancer cultures, including three-dimensional organoids, typically contain exclusively neoplastic epithelium but require artificial reconstitution to recapitulate the tumor microenvironment (TME). The co-culture of primary tumor epithelia with endogenous, syngeneic tumor-infiltrating lymphocytes (TILs) as a cohesive unit has been particularly elusive. Here, an air-liquid interface (ALI) method propagated patient-derived organoids (PDOs) from >100 human biopsies or mouse tumors in syngeneic immunocompetent hosts as tumor epithelia with native embedded immune cells (T, B, NK, macrophages). Robust droplet-based, single-cell simultaneous determination of gene expression and immune repertoire indicated that PDO TILs accurately preserved the original tumor T cell receptor (TCR) spectrum. Crucially, human and murine PDOs successfully modeled immune checkpoint blockade (ICB) with anti-PD-1- and/or anti-PD-L1 expanding and activating tumor antigen-specific TILs and eliciting tumor cytotoxicity. Organoid-based propagation of primary tumor epithelium en bloc with endogenous immune stroma should enable immuno-oncology investigations within the TME and facilitate personalized immunotherapy testing.


Asunto(s)
Modelos Inmunológicos , Neoplasias Experimentales/inmunología , Organoides/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Microambiente Tumoral/inmunología , Animales , Antígeno B7-H1/inmunología , Técnicas de Cocultivo , Femenino , Humanos , Inmunoterapia , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas de Neoplasias/inmunología , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Organoides/patología
2.
Nature ; 569(7757): 503-508, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31068700

RESUMEN

Large panels of comprehensively characterized human cancer models, including the Cancer Cell Line Encyclopedia (CCLE), have provided a rigorous framework with which to study genetic variants, candidate targets, and small-molecule and biological therapeutics and to identify new marker-driven cancer dependencies. To improve our understanding of the molecular features that contribute to cancer phenotypes, including drug responses, here we have expanded the characterizations of cancer cell lines to include genetic, RNA splicing, DNA methylation, histone H3 modification, microRNA expression and reverse-phase protein array data for 1,072 cell lines from individuals of various lineages and ethnicities. Integration of these data with functional characterizations such as drug-sensitivity, short hairpin RNA knockdown and CRISPR-Cas9 knockout data reveals potential targets for cancer drugs and associated biomarkers. Together, this dataset and an accompanying public data portal provide a resource for the acceleration of cancer research using model cancer cell lines.


Asunto(s)
Línea Celular Tumoral , Neoplasias/genética , Neoplasias/patología , Antineoplásicos/farmacología , Biomarcadores de Tumor , Metilación de ADN , Resistencia a Antineoplásicos , Etnicidad/genética , Edición Génica , Histonas/metabolismo , Humanos , MicroARNs/genética , Terapia Molecular Dirigida , Neoplasias/metabolismo , Análisis por Matrices de Proteínas , Empalme del ARN
3.
Bioinformatics ; 38(20): 4677-4686, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36040167

RESUMEN

MOTIVATION: Somatic copy-number alterations (SCNAs) play an important role in cancer development. Systematic noise in sequencing and array data present a significant challenge to the inference of SCNAs for cancer genome analyses. As part of The Cancer Genome Atlas, the Broad Institute Genome Characterization Center developed the Tangent normalization method to generate copy-number profiles using data from single-nucleotide polymorphism (SNP) arrays and whole-exome sequencing (WES) technologies for over 10 000 pairs of tumors and matched normal samples. Here, we describe the Tangent method, which uses a unique linear combination of normal samples as a reference for each tumor sample, to subtract systematic errors that vary across samples. We also describe a modification of Tangent, called Pseudo-Tangent, which enables denoising through comparisons between tumor profiles when few normal samples are available. RESULTS: Tangent normalization substantially increases signal-to-noise ratios (SNRs) compared to conventional normalization methods in both SNP array and WES analyses. Tangent and Pseudo-Tangent normalizations improve the SNR by reducing noise with minimal effect on signal and exceed the contribution of other steps in the analysis such as choice of segmentation algorithm. Tangent and Pseudo-Tangent are broadly applicable and enable more accurate inference of SCNAs from DNA sequencing and array data. AVAILABILITY AND IMPLEMENTATION: Tangent is available at https://github.com/broadinstitute/tangent and as a Docker image (https://hub.docker.com/r/broadinstitute/tangent). Tangent is also the normalization method for the copy-number pipeline in Genome Analysis Toolkit 4 (GATK4). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Neoplasias , Programas Informáticos , Humanos , Algoritmos , Variaciones en el Número de Copia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias/genética
4.
Prostate ; 82(5): 584-597, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35084050

RESUMEN

BACKGROUND: Primary and metastatic prostate cancers have low mutation rates and recurrent alterations in a small set of genes, enabling targeted sequencing of prostate cancer-associated genes as an efficient approach to characterizing patient samples (compared to whole-exome and whole-genome sequencing). For example, targeted sequencing provides a flexible, rapid, and cost-effective method for genomic assessment of patient-derived cell lines to evaluate fidelity to initial patient tumor samples. METHODS: We developed a prostate cancer-specific targeted next-generation sequencing (NGS) panel to detect alterations in 62 prostate cancer-associated genes as well as recurring gene fusions with ETS family members, representing the majority of common alterations in prostate cancer. We tested this panel on primary prostate cancer tissues and blood biopsies from patients with metastatic prostate cancer. We generated patient-derived cell lines from primary prostate cancers using conditional reprogramming methods and applied targeted sequencing to evaluate the fidelity of these cell lines to the original patient tumors. RESULTS: The prostate cancer-specific panel identified biologically and clinically relevant alterations, including point mutations in driver oncogenes and ETS family fusion genes, in tumor tissues from 29 radical prostatectomy samples. The targeted panel also identified genomic alterations in cell-free DNA and circulating tumor cells (CTCs) from patients with metastatic prostate cancer, and in standard prostate cancer cell lines. We used the targeted panel to sequence our set of patient-derived cell lines; however, no prostate cancer-specific mutations were identified in the tumor-derived cell lines, suggesting preferential outgrowth of normal prostate epithelial cells. CONCLUSIONS: We evaluated a prostate cancer-specific targeted NGS panel to detect common and clinically relevant alterations (including ETS family gene fusions) in prostate cancer. The panel detected driver mutations in a diverse set of clinical samples of prostate cancer, including fresh-frozen tumors, cell-free DNA, CTCs, and cell lines. Targeted sequencing of patient-derived cell lines highlights the challenge of deriving cell lines from primary prostate cancers and the importance of genomic characterization to credential candidate cell lines. Our study supports that a prostate cancer-specific targeted sequencing panel provides an efficient, clinically feasible approach to identify genetic alterations across a spectrum of prostate cancer samples and cell lines.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias de la Próstata , Línea Celular , Habilitación Profesional , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Mutación , Neoplasias de la Próstata/genética
5.
PLoS Genet ; 12(8): e1006242, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27494029

RESUMEN

Renal angiomyolipoma is a kidney tumor in the perivascular epithelioid (PEComa) family that is common in patients with Tuberous Sclerosis Complex (TSC) and Lymphangioleiomyomatosis (LAM) but occurs rarely sporadically. Though histologically benign, renal angiomyolipoma can cause life-threatening hemorrhage and kidney failure. Both angiomyolipoma and LAM have mutations in TSC2 or TSC1. However, the frequency and contribution of other somatic events in tumor development is unknown. We performed whole exome sequencing in 32 resected tumor samples (n = 30 angiomyolipoma, n = 2 LAM) from 15 subjects, including three with TSC. Two germline and 22 somatic inactivating mutations in TSC2 were identified, and one germline TSC1 mutation. Twenty of 32 (62%) samples showed copy neutral LOH (CN-LOH) in TSC2 or TSC1 with at least 8 different LOH regions, and 30 of 32 (94%) had biallelic loss of either TSC2 or TSC1. Whole exome sequencing identified a median of 4 somatic non-synonymous coding region mutations (other than in TSC2/TSC1), a mutation rate lower than nearly all other cancer types. Three genes with mutations were known cancer associated genes (BAP1, ARHGAP35 and SPEN), but they were mutated in a single sample each, and were missense variants with uncertain functional effects. Analysis of sixteen angiomyolipomas from a TSC subject showed both second hit point mutations and CN-LOH in TSC2, many of which were distinct, indicating that they were of independent clonal origin. However, three tumors had two shared mutations in addition to private somatic mutations, suggesting a branching evolutionary pattern of tumor development following initiating loss of TSC2. Our results indicate that TSC2 and less commonly TSC1 alterations are the primary essential driver event in angiomyolipoma/LAM, whereas other somatic mutations are rare and likely do not contribute to tumor development.


Asunto(s)
Angiomiolipoma/genética , Neoplasias Renales/genética , Linfangioleiomiomatosis/genética , Proteínas Supresoras de Tumor/genética , Adulto , Angiomiolipoma/patología , Carcinogénesis/genética , Exoma/genética , Femenino , Mutación de Línea Germinal , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Renales/patología , Pérdida de Heterocigocidad/genética , Linfangioleiomiomatosis/patología , Masculino , Mutación , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa
6.
Bioinformatics ; 31(7): 1124-6, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25414365

RESUMEN

MOTIVATION: High-throughput datasets such as genetic screens, mRNA expression assays and global phospho-proteomic experiments are often difficult to interpret due to inherent noise in each experimental system. Computational tools have improved interpretation of these datasets by enabling the identification of biological processes and pathways that are most likely to explain the measured results. These tools are primarily designed to analyse data from a single experiment (e.g. drug treatment versus control), creating a need for computational algorithms that can handle heterogeneous datasets across multiple experimental conditions at once. SUMMARY: We introduce SAMNetWeb, a web-based tool that enables functional enrichment analysis and visualization of high-throughput datasets. SAMNetWeb can analyse two distinct data types (e.g. mRNA expression and global proteomics) simultaneously across multiple experimental systems to identify pathways activated in these experiments and then visualize the pathways in a single interaction network. Through the use of a multi-commodity flow based algorithm that requires each experiment 'share' underlying protein interactions, SAMNetWeb can identify distinct and common pathways across experiments. AVAILABILITY AND IMPLEMENTATION: SAMNetWeb is freely available at http://fraenkel.mit.edu/samnetweb.


Asunto(s)
Algoritmos , Redes Reguladoras de Genes , Genómica/métodos , Proteómica/métodos , Transducción de Señal , Programas Informáticos , Biología de Sistemas/métodos , Biomarcadores de Tumor/análisis , Neoplasias de la Mama/genética , Interpretación Estadística de Datos , Femenino , Perfilación de la Expresión Génica , Humanos , Internet , Neoplasias Pulmonares/genética , ARN Mensajero/genética , Células Tumorales Cultivadas
7.
Clin Cancer Res ; 28(11): 2339-2348, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35101884

RESUMEN

PURPOSE: Young age at breast cancer diagnosis correlates with unfavorable clinicopathologic features and worse outcomes compared with older women. Understanding biological differences between breast tumors in young versus older women may lead to better therapeutic approaches for younger patients. EXPERIMENTAL DESIGN: We identified 100 patients ≤35 years old at nonmetastatic breast cancer diagnosis who participated in the prospective Young Women's Breast Cancer Study cohort. Tumors were assigned a surrogate intrinsic subtype based on receptor status and grade. Whole-exome sequencing of tumor and germline samples was performed. Genomic alterations were compared with older women (≥45 years old) in The Cancer Genome Atlas, according to intrinsic subtype. RESULTS: Ninety-three tumors from 92 patients were successfully sequenced. Median age was 32.5 years; 52.7% of tumors were hormone receptor-positive/HER2-negative, 28.0% HER2-positive, and 16.1% triple-negative. Comparison of young to older women (median age 61 years) with luminal A tumors (N = 28 young women) revealed three significant differences: PIK3CA alterations were more common in older patients, whereas GATA3 and ARID1A alterations were more common in young patients. No significant genomic differences were found comparing age groups in other intrinsic subtypes. Twenty-two patients (23.9%) in the Young Women's Study cohort carried a pathogenic germline variant, most commonly (13 patients, 14.1%) in BRCA1/2. CONCLUSIONS: Somatic alterations in three genes (PIK3CA, GATA3, and ARID1A) occur at different frequencies in young versus older women with luminal A breast cancer. Additional investigation of these genes and associated pathways could delineate biological susceptibilities and improve treatment options for young patients with breast cancer. See related commentary by Yehia and Eng, p. 2209.


Asunto(s)
Neoplasias de la Mama , Adulto , Anciano , Neoplasias de la Mama/patología , Fosfatidilinositol 3-Quinasa Clase I/genética , Femenino , Genómica , Células Germinativas/metabolismo , Humanos , Persona de Mediana Edad , Estudios Prospectivos
8.
Nat Genet ; 49(11): 1567-1575, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28991255

RESUMEN

Patient-derived xenografts (PDXs) have become a prominent cancer model system, as they are presumed to faithfully represent the genomic features of primary tumors. Here we monitored the dynamics of copy number alterations (CNAs) in 1,110 PDX samples across 24 cancer types. We observed rapid accumulation of CNAs during PDX passaging, often due to selection of preexisting minor clones. CNA acquisition in PDXs was correlated with the tissue-specific levels of aneuploidy and genetic heterogeneity observed in primary tumors. However, the particular CNAs acquired during PDX passaging differed from those acquired during tumor evolution in patients. Several CNAs recurrently observed in primary tumors gradually disappeared in PDXs, indicating that events undergoing positive selection in humans can become dispensable during propagation in mice. Notably, the genomic stability of PDXs was associated with their response to chemotherapy and targeted drugs. These findings have major implications for PDX-based modeling of human cancer.


Asunto(s)
Evolución Clonal/genética , Variaciones en el Número de Copia de ADN , Xenoinjertos/metabolismo , Neoplasias/genética , Aneuploidia , Animales , Antineoplásicos/farmacología , Células Clonales , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Modelos Animales de Enfermedad , Xenoinjertos/efectos de los fármacos , Xenoinjertos/patología , Humanos , Ratones , Neoplasias/clasificación , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Selección Genética , Especificidad de la Especie , Células Tumorales Cultivadas
9.
Cancer Discov ; 7(9): 973-983, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28515055

RESUMEN

African-American men have the highest incidence of and mortality from prostate cancer. Whether a biological basis exists for this disparity remains unclear. Exome sequencing (n = 102) and targeted validation (n = 90) of localized primary hormone-naïve prostate cancer in African-American men identified several gene mutations not previously observed in this context, including recurrent loss-of-function mutations in ERF, an ETS transcriptional repressor, in 5% of cases. Analysis of existing prostate cancer cohorts revealed ERF deletions in 3% of primary prostate cancers and mutations or deletions in ERF in 3% to 5% of lethal castration-resistant prostate cancers. Knockdown of ERF confers increased anchorage-independent growth and generates a gene expression signature associated with oncogenic ETS activation and androgen signaling. Together, these results suggest that ERF is a prostate cancer tumor-suppressor gene. More generally, our findings support the application of systematic cancer genomic characterization in settings of broader ancestral diversity to enhance discovery and, eventually, therapeutic applications.Significance: Systematic genomic sequencing of prostate cancer in African-American men revealed new insights into prostate cancer, including the identification of ERF as a prostate cancer gene; somatic copy-number alteration differences; and uncommon PIK3CA and PTEN alterations. This study highlights the importance of inclusion of underrepresented minorities in cancer sequencing studies. Cancer Discov; 7(9); 973-83. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 920.


Asunto(s)
Neoplasias de la Próstata/genética , Proteínas Represoras/genética , Negro o Afroamericano/genética , Animales , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/genética , Exoma , Humanos , Masculino , Ratones , Mutación , Fosfohidrolasa PTEN/genética , Neoplasias de la Próstata/patología , Secuenciación del Exoma
10.
Nat Commun ; 8(1): 1324, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-29109393

RESUMEN

Whole-exome sequencing of cell-free DNA (cfDNA) could enable comprehensive profiling of tumors from blood but the genome-wide concordance between cfDNA and tumor biopsies is uncertain. Here we report ichorCNA, software that quantifies tumor content in cfDNA from 0.1× coverage whole-genome sequencing data without prior knowledge of tumor mutations. We apply ichorCNA to 1439 blood samples from 520 patients with metastatic prostate or breast cancers. In the earliest tested sample for each patient, 34% of patients have ≥10% tumor-derived cfDNA, sufficient for standard coverage whole-exome sequencing. Using whole-exome sequencing, we validate the concordance of clonal somatic mutations (88%), copy number alterations (80%), mutational signatures, and neoantigens between cfDNA and matched tumor biopsies from 41 patients with ≥10% cfDNA tumor content. In summary, we provide methods to identify patients eligible for comprehensive cfDNA profiling, revealing its applicability to many patients, and demonstrate high concordance of cfDNA and metastatic tumor whole-exome sequencing.


Asunto(s)
Ácidos Nucleicos Libres de Células/genética , ADN de Neoplasias/genética , Secuenciación del Exoma/métodos , Metástasis de la Neoplasia/genética , Antígenos de Neoplasias/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/secundario , Ácidos Nucleicos Libres de Células/sangre , Análisis Mutacional de ADN , ADN de Neoplasias/sangre , Femenino , Dosificación de Gen , Humanos , Masculino , Metástasis de la Neoplasia/tratamiento farmacológico , Estudios Prospectivos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/secundario , Programas Informáticos , Secuenciación del Exoma/estadística & datos numéricos
11.
Nat Commun ; 7: 11987, 2016 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-27329820

RESUMEN

Identifying therapeutic targets in rare cancers remains challenging due to the paucity of established models to perform preclinical studies. As a proof-of-concept, we developed a patient-derived cancer cell line, CLF-PED-015-T, from a paediatric patient with a rare undifferentiated sarcoma. Here, we confirm that this cell line recapitulates the histology and harbours the majority of the somatic genetic alterations found in a metastatic lesion isolated at first relapse. We then perform pooled CRISPR-Cas9 and RNAi loss-of-function screens and a small-molecule screen focused on druggable cancer targets. Integrating these three complementary and orthogonal methods, we identify CDK4 and XPO1 as potential therapeutic targets in this cancer, which has no known alterations in these genes. These observations establish an approach that integrates new patient-derived models, functional genomics and chemical screens to facilitate the discovery of targets in rare cancers.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/genética , Carioferinas/genética , Enfermedades Raras/genética , Receptores Citoplasmáticos y Nucleares/genética , Sarcoma/genética , Células A549 , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Sistemas CRISPR-Cas , Ciclo Celular , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Ensayos de Selección de Medicamentos Antitumorales , Exoma , Femenino , Genómica , Humanos , Hidrazinas/administración & dosificación , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia , Trasplante de Neoplasias , Piperazinas/administración & dosificación , Piridinas/administración & dosificación , Interferencia de ARN , Enfermedades Raras/tratamiento farmacológico , Sarcoma/tratamiento farmacológico , Análisis de Secuencia de ARN , Triazoles/administración & dosificación , Proteína Exportina 1
12.
Cancer Discov ; 6(8): 914-29, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27260156

RESUMEN

UNLABELLED: The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest. By examining single-guide RNAs that map to multiple genomic sites, we found that this cell response to CRISPR/Cas9 editing correlated strongly with the number of target loci. These observations indicate that genome targeting by CRISPR/Cas9 elicits a gene-independent antiproliferative cell response. This effect has important practical implications for the interpretation of CRISPR/Cas9 screening data and confounds the use of this technology for the identification of essential genes in amplified regions. SIGNIFICANCE: We found that the number of CRISPR/Cas9-induced DNA breaks dictates a gene-independent antiproliferative response in cells. These observations have practical implications for using CRISPR/Cas9 to interrogate cancer gene function and illustrate that cancer cells are highly sensitive to site-specific DNA damage, which may provide a path to novel therapeutic strategies. Cancer Discov; 6(8); 914-29. ©2016 AACR.See related commentary by Sheel and Xue, p. 824See related article by Munoz et al., p. 900This article is highlighted in the In This Issue feature, p. 803.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Dosificación de Gen , Marcación de Gen , Genómica , Línea Celular Tumoral , División del ADN , Variaciones en el Número de Copia de ADN , Daño del ADN , Puntos de Control de la Fase G2 del Ciclo Celular , Amplificación de Genes , Edición Génica , Expresión Génica , Técnicas de Inactivación de Genes , Marcación de Gen/métodos , Genes Esenciales , Genómica/métodos , Ensayos Analíticos de Alto Rendimiento , Humanos , ARN Guía de Kinetoplastida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA