Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
PLoS Biol ; 9(6): e1000624, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21666802

RESUMEN

The Hippo signaling pathway has a conserved role in growth control and is of fundamental importance during both normal development and oncogenesis. Despite rapid progress in recent years, key steps in the pathway remain poorly understood, in part due to the incomplete identification of components. Through a genetic screen, we identified the Drosophila Zyxin family gene, Zyx102 (Zyx), as a component of the Hippo pathway. Zyx positively regulates the Hippo pathway transcriptional co-activator Yorkie, as its loss reduces Yorkie activity and organ growth. Through epistasis tests, we position the requirement for Zyx within the Fat branch of Hippo signaling, downstream of Fat and Dco, and upstream of the Yorkie kinase Warts, and we find that Zyx is required for the influence of Fat on Warts protein levels. Zyx localizes to the sub-apical membrane, with distinctive peaks of accumulation at intercellular vertices. This partially overlaps the membrane localization of the myosin Dachs, which has similar effects on Fat-Hippo signaling. Co-immunoprecipitation experiments show that Zyx can bind to Dachs and that Dachs stimulates binding of Zyx to Warts. We also extend characterization of the Ajuba LIM protein Jub and determine that although Jub and Zyx share C-terminal LIM domains, they regulate Hippo signaling in distinct ways. Our results identify a role for Zyx in the Hippo pathway and suggest a mechanism for the role of Dachs: because Fat regulates the localization of Dachs to the membrane, where it can overlap with Zyx, we propose that the regulated localization of Dachs influences downstream signaling by modulating Zyx-Warts binding. Mammalian Zyxin proteins have been implicated in linking effects of mechanical strain to cell behavior. Our identification of Zyx as a regulator of Hippo signaling thus also raises the possibility that mechanical strain could be linked to the regulation of gene expression and growth through Hippo signaling.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Zixina/metabolismo , Animales , Membrana Celular/metabolismo , Drosophila melanogaster/citología , Epistasis Genética , Modelos Biológicos , Unión Proteica , Transporte de Proteínas , Alas de Animales/citología , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
2.
Dev Biol ; 335(1): 188-97, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19733165

RESUMEN

The Fat-Hippo signaling pathway plays an important role in the regulation of normal organ growth during development, and in pathological growth during cancer. Fat-Hippo signaling controls growth through a transcriptional co-activator protein, Yorkie. A Fat-Hippo pathway has been described in which Yorkie is repressed by phosphorylation, mediated directly by the kinase Warts and indirectly by upstream tumor suppressors that promote Warts kinase activity. We present here evidence for an alternate pathway in which Yorkie activity is repressed by direct physical association with three other pathway components: Expanded, Hippo, and Warts. Each of these Yorkie repressors contains one or more PPXY sequence motifs, and associates with Yorkie via binding of these PPXY motifs to WW domains of Yorkie. This direct binding inhibits Yorkie activity independently from effects on Yorkie phosphorylation, and does so both in vivo and in cultured cell assays. These results emphasize the importance of the relative levels of Yorkie and its upstream tumor suppressors to Yorkie regulation, and suggest a dual repression model, in which upstream tumor suppressors can regulate Yorkie activity both by promoting Yorkie phosphorylation and by direct binding.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Transactivadores/metabolismo , Animales , Animales Modificados Genéticamente , Moléculas de Adhesión Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/genética , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transactivadores/genética , Proteínas Señalizadoras YAP
3.
Biochem Biophys Res Commun ; 399(2): 227-31, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20654579

RESUMEN

The male-specific lethal (MSL) complex in Drosophila melanogaster paints the male X chromosome in a manner that is both cis and trans to induce 2-fold hypertranscription of the X chromosome. To characterize the upregulation of gene expression by MSL cis-spreading, we measured the expressional change of neighboring genes by microarray when the genes were bound by MSL complexes that spread from an autosomal roX transgene. Genes within a 200kb region that includes roX transgenes were upregulated concurrently with MSL cis-spreading. Conversely, there was almost no expressional change in genes from other regions. RT-PCR and ChIP analyses confirmed that the approximately 2-fold gene hypertranscription was due to MSL cis-spreading. We also demonstrated that upregulation of the neighboring gene could rescue haplo-insufficient phenotypes of the Minute mutant, such as short bristle, delayed adult eclosion and decreased viability. These results indicate that the hypertranscription by MSL cis-spreading is a general mechanism that occurs in several tissue types. Our molecular and genetic data suggest that cis-spreading of the MSL complex from high-affinity sites including the roX gene results in upregulation of the neighboring genes, which are targets for dosage compensation in the male X chromosome.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/genética , Factores de Transcripción/metabolismo , Cromosoma X/genética , Animales , Prueba de Complementación Genética , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Transgenes , Regulación hacia Arriba
4.
Genetics ; 177(3): 1429-37, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18039876

RESUMEN

The male-specific lethal (MSL) complex, which includes two noncoding RNA on X (roX)1 and roX2 RNAs, induces histone H4-Lys16 acetylation for twofold hypertranscription of the male X chromosome in Drosophila melanogaster. To characterize the role of roX RNAs in this process, we have identified evolutionarily conserved functional domains of roX RNAs in several Drosophila species (eight for roX1 and nine for roX2). Despite low homology between them, male-specific expression and X chromosome-specific binding are conserved. Within roX RNAs of all Drosophila species, we found conserved primary sequences, such as GUUNUACG, in the 3' end of both roX1 (three repeats) and roX2 (two repeats). A predicted stem-loop structure of roX2 RNA contains this sequence in the 3' stem region. Six tandem repeats of this stem-loop region (72 nt) of roX2 were enough for targeting the MSL complex and inducing H4-Lys16 acetylation on the X chromosome without other parts of roX2 RNA, suggesting that roX RNAs might play important roles in regulating enzymatic activity of the MSL complex.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila/genética , Histonas/química , Histonas/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , ARN/química , ARN/genética , Cromosoma X/genética , Acetilación , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Secuencia Conservada , Cartilla de ADN/genética , Drosophila melanogaster/genética , Evolución Molecular , Lisina/química , Masculino , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Filogenia , Homología de Secuencia de Ácido Nucleico
5.
Curr Biol ; 14(6): 481-7, 2004 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-15043812

RESUMEN

MSL complexes bind hundreds of sites along the single male X chromosome to achieve dosage compensation in Drosophila. Previously, we proposed that approximately 35 "high-affinity" or "chromatin entry" sites (CES) might nucleate spreading of MSL complexes in cis to paint the X chromosome. This was based on analysis of the first characterized sites roX1 and roX2. roX transgenes attract MSL complex to autosomal locations where it can spread long distances into flanking chromatin. roX1 and roX2 also produce noncoding RNA components of the complex. Here we identify a third site from the 18D10 region of the X chromosome. Like roX genes, 18D binds full and partial MSL complexes in vivo and encompasses a male-specific DNase I hypersensitive site (DHS). Unlike roX genes, the 510 bp 18D site is apparently not transcribed and shows high affinity for MSL complex and spreading only as a multimer. While mapping 18D, we discovered MSL binding to X cosmids that do not carry one of the approximately 35 high-affinity sites. Based on additional analyses of chromosomal transpositions, we conclude that spreading in cis from the roX genes or the approximately 35 originally proposed "entry sites" cannot be the sole mechanism for MSL targeting to the X chromosome.


Asunto(s)
Compensación de Dosificación (Genética) , Drosophila/genética , Factores de Transcripción/metabolismo , Cromosoma X/metabolismo , Animales , Sitios de Unión/genética , Mapeo Cromosómico , Cartilla de ADN , Desoxirribonucleasa I/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila , Inmunohistoquímica , Masculino , Plásmidos , Pruebas de Precipitina , Proteínas de Unión al ARN , Factores de Transcripción/genética , Transformación Genética , Transgenes , Cromosoma X/genética
6.
Oncotarget ; 7(17): 24063-75, 2016 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-27006470

RESUMEN

The Hippo pathway represses YAP oncoprotein activity through phosphorylation by LATS kinases. Although variety of upstream components has been found to participate in the Hippo pathway, the existence and function of negative feedback has remained uncertain. We found that activated YAP, together with TEAD transcription factors, directly induces transcription of LATS2, but not LATS1, to form a negative feedback loop. We also observed increased mRNA levels of Hippo upstream components upon YAP activation. To reveal the physiological role of this negative feedback regulation, we deleted Lats2 or Lats1 in the liver-specific Sav1-knockout mouse model which develops a YAP-induced tumor. Additional deletion of Lats2 severely enhanced YAP-induced tumorigenic phenotypes in a liver specific Sav1 knock-out mouse model while additional deletion of Lats1 mildly affected the phenotype. Only Sav1 and Lats2 double knock-down cells formed larger colonies in soft agar assay, thereby recapitulating accelerated tumorigenesis seen in vivo. Importantly, this negative feedback is evolutionarily conserved, as Drosophila Yorkie (YAP ortholog) induces transcription of Warts (LATS2 ortholog) with Scalloped (TEAD ortholog). Collectively, we demonstrated the existence and function of an evolutionarily conserved negative feedback mechanism in the Hippo pathway, as well as the functional difference between LATS1 and LATS2 in regulation of YAP.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Supresoras de Tumor/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Evolución Molecular , Retroalimentación Fisiológica , Vía de Señalización Hippo , Humanos , Ratones , Ratones Noqueados , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Células Tumorales Cultivadas , Proteínas Señalizadoras YAP
7.
RNA Biol ; 2(4): 157-64, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-17114930

RESUMEN

The non-coding roX1 and roX2 RNAs are components of the MSL dosage compensation complex in Drosophila. We found that multiple species of roX2 RNA are produced by alternative splicing, with one major and at least 20 different minor forms associated with MSL proteins. The alternative forms are generated by variable usage of multiple 5' and 3' splice sites between two common exons. This alternative splicing is evolutionarily conserved in several distant Drosophila species in spite of differences in primary sequences. Transgenic constructs expressing individual major or minor D. melanogaster roX2 species display low steady-state levels of roX2 RNA, weak accumulation of MSL complex on the X chromosome, and low rescue of male-specific roX(-) lethality. Increased expression of individual roX2 forms using the constitutive Hsp83 promoter results in increased transgenic rescue of roX(-) mutant male flies. However, although males survive they are delayed in their development. In addition, MSL complexes still show low affinity for the X chromosome and abnormal accumulation at the transgenic site of synthesis of the individual roX2 alternative splice form. Taken together, these results suggest an important role for roX2 RNA splicing in optimal MSL complex assembly or function.


Asunto(s)
Empalme Alternativo/genética , Compensación de Dosificación (Genética) , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Animales , Secuencia de Bases , Proteínas de Drosophila/biosíntesis , Masculino , Datos de Secuencia Molecular , Proteínas de Unión al ARN/biosíntesis
8.
Cell Rep ; 8(2): 449-59, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25017066

RESUMEN

Hippo signaling limits organ growth by inhibiting the transcriptional coactivator Yorkie. Despite the key role of Yorkie in both normal and oncogenic growth, the mechanism by which it activates transcription has not been defined. We report that Yorkie binding to chromatin correlates with histone H3K4 methylation and is sufficient to locally increase it. We show that Yorkie can recruit a histone methyltransferase complex through binding between WW domains of Yorkie and PPxY sequence motifs of NcoA6, a subunit of the Trithorax-related (Trr) methyltransferase complex. Cell culture and in vivo assays establish that this recruitment of NcoA6 contributes to Yorkie's ability to activate transcription. Mammalian NcoA6, a subunit of Trr-homologous methyltransferase complexes, can similarly interact with Yorkie's mammalian homolog YAP. Our results implicate direct recruitment of a histone methyltransferase complex as central to transcriptional activation by Yorkie, linking the control of cell proliferation by Hippo signaling to chromatin modification.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/genética , Proteínas Nucleares/metabolismo , Coactivadores de Receptor Nuclear/metabolismo , Transactivadores/metabolismo , Activación Transcripcional , Secuencias de Aminoácidos , Animales , Sitios de Unión , Cromatina/genética , Cromatina/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Coactivadores de Receptor Nuclear/química , Coactivadores de Receptor Nuclear/genética , Unión Proteica , Transactivadores/química , Transactivadores/genética , Proteínas Señalizadoras YAP
9.
Cell Rep ; 3(2): 309-18, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23395637

RESUMEN

The Hippo pathway regulates growth through the transcriptional coactivator Yorkie, but how Yorkie promotes transcription remains poorly understood. We address this by characterizing Yorkie's association with chromatin and by identifying nuclear partners that effect transcriptional activation. Coimmunoprecipitation and mass spectrometry identify GAGA factor (GAF), the Brahma complex, and the Mediator complex as Yorkie-associated nuclear protein complexes. All three are required for Yorkie's transcriptional activation of downstream genes, and GAF and the Brahma complex subunit Moira interact directly with Yorkie. Genome-wide chromatin-binding experiments identify thousands of Yorkie sites, most of which are associated with elevated transcription, based on genome-wide analysis of messenger RNA and histone H3K4Me3 modification. Chromatin binding also supports extensive functional overlap between Yorkie and GAF. Our studies suggest a widespread role for Yorkie as a regulator of transcription and identify recruitment of the chromatin-modifying GAF protein and BRM complex as a molecular mechanism for transcriptional activation by Yorkie.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Genoma , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/genética , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Histonas/metabolismo , Complejo Mediador/metabolismo , Proteínas Nucleares/genética , Unión Proteica , Interferencia de ARN , ARN Mensajero/análisis , ARN Interferente Pequeño/metabolismo , Transactivadores/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Alas de Animales/patología , Proteínas Señalizadoras YAP
10.
Dev Cell ; 20(1): 109-22, 2011 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-21238929

RESUMEN

The Dpp and Fat-Hippo signaling pathways both regulate growth in Drosophila. Dpp is a BMP family ligand and acts via a Smad family DNA-binding transcription factor, Mad. Fat-Hippo signaling acts via a non-DNA-binding transcriptional coactivator protein, Yorkie. Here, we show that these pathways are directly interlinked. They act synergistically to promote growth, in part via regulation of the microRNA gene bantam, and their ability to promote growth is mutually dependent. Yorkie and Mad physically bind each other, and we identify a 410 bp minimal enhancer of bantam that responds to Yorkie:Mad in vivo and in cultured cells, and show that both Yorkie and Mad associate with this enhancer in vivo. Our results indicate that in promoting the growth of Drosophila tissues, Fat-Hippo and Dpp signaling contribute distinct subunits of a shared transcriptional activation complex, Yorkie:Mad.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , MicroARNs/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , Unión Proteica , Alas de Animales/citología , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Proteínas Señalizadoras YAP
11.
Trends Cell Biol ; 20(7): 410-7, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20452772

RESUMEN

The Hippo signaling pathway is a key regulator of growth during animal development, whereas loss of normal Hippo pathway activity is associated with a wide range of cancers. Hippo signaling represses growth by inhibiting the activity of a transcriptional co-activator protein, known as Yorkie in Drosophila and Yap in vertebrates. In the 5 years since the first report linking Yorkie to Hippo signaling, intense interest in this pathway has led to rapid increases in our understanding of the action and regulation of Yorkie/Yap, which we review here. These studies have also emphasized the complexity of Yorkie/Yap regulation, including multiple, distinct mechanisms for repressing its transcriptional activity, and multiple DNA-binding partner proteins that can direct Yorkie to distinct downstream target genes.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Humanos , Proteínas Señalizadoras YAP
12.
Methods Mol Biol ; 587: 303-26, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20225159

RESUMEN

Drosophila maleless (MLE) is a member of helicase superfamily 2 and functions as a dosage compensation factor essential for the development of male flies. This function provides a good opportunity to investigate diverse biochemical activities associated with MLE in the context of a defined in vivo pathway, i.e., the transcriptional activation of X-linked genes. We have shown for the first time that MLE catalyzes the unwinding of both DNA and RNA and that MLE helicase activity is essential for its in vivo function. Also, we have provided evidence that MLE stimulates the transcriptional activity of roX2 on the X chromosome. We have also found that MLE interacts with dsDNA, topoisomerase II, and nucleosome. This observation supports a current model of dosage compensation: transcriptional activation of X-linked genes is causally associated with conformational change in the male X chromosome, subsequent to the targeted association of the dosage compensation complex (DCC).


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , ADN Helicasas/metabolismo , ADN de Cadena Simple/metabolismo , ADN/metabolismo , Proteínas de Drosophila/metabolismo , ARN Bicatenario/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Bioensayo/métodos , Proteínas Cromosómicas no Histona/genética , ADN/genética , ADN Helicasas/genética , ADN de Cadena Simple/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genes Reporteros , Masculino , ARN Bicatenario/genética , Factores de Transcripción/genética
13.
Development ; 135(6): 1081-8, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18256197

RESUMEN

Yorkie (Yki), a transcription factor of the Fat and Hippo signaling pathways, is negatively regulated by the Warts kinase. Here, we use Phos-tag gels to characterize Warts-dependent phosphorylation of Yki in vivo, and show that Warts promotes phosphorylation of Yki at multiple sites. We also show that Warts inhibits Yki nuclear localization in vivo, and can promote binding of Yki to 14-3-3 proteins in cultured cells. In vivo assessment of the influence of individual upstream regulators of Warts reveals that some mutants (e.g. fat) have only partial effects on Yki phosphorylation, and weak effects on Yki localization, whereas other genotypes (e.g. ex fat double mutants) have stronger effects on both Yki phosphorylation and localization. We also identify serine 168 as a critical site through which negative regulation of Yki by Warts-mediated phosphorylation occurs, but find that this site is not sufficient to explain effects of Hippo signaling on Yki in vivo. These results identify modulation of subcellular localization as a mechanism of Yki regulation, and establish that this regulation occurs in vivo through multiple sites of Warts-dependent phosphorylation on Yki.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Proteínas 14-3-3/metabolismo , Sustitución de Aminoácidos , Animales , Animales Modificados Genéticamente , Sitios de Unión , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Femenino , Genes de Insecto , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Mutagénesis Sitio-Dirigida , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilación , Unión Proteica , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/química , Transducción de Señal , Transactivadores/química , Transactivadores/genética , Proteínas Señalizadoras YAP
14.
Genes Dev ; 17(11): 1334-9, 2003 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-12782651

RESUMEN

MSL proteins and noncoding roX RNAs form complexes to up-regulate hundreds of genes on the Drosophila male X chromosome, and make X-linked gene expression equal in males and females. Altering the ratio of MSL proteins to roX RNA dramatically changes X-chromosome morphology. In protein excess, the MSL complex concentrates near sites of roX transcription and is depleted elsewhere. These results support a model for distribution of MSL complexes, in which local spreading in cis from roX genes is balanced with diffusion of soluble complexes in trans. When overexpressed, MSL proteins can recognize the X chromosome, modify histones, and partially restore male viability even in the absence of roX RNAs. Thus, the protein components can carry out all essential functions of dosage compensation, but roX RNAs facilitate the correct targeting of MSL complexes, in part by nucleation of spreading from their sites of synthesis.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Proteínas Nucleares/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Cromosoma X , Animales , Secuencia de Bases , Cruzamientos Genéticos , Cartilla de ADN , Proteínas de Unión al ADN , Femenino , Genotipo , Masculino , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Eliminación de Secuencia
15.
Science ; 298(5598): 1620-3, 2002 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-12446910

RESUMEN

The untranslated roX1 and roX2 RNAs are components of the Drosophila male-specific lethal (MSL) complex, which modifies histones to up-regulate transcription of the male X chromosome. roX genes are normally located on the X chromosome, and roX transgenes can misdirect the dosage compensation machinery to spread locally on other chromosomes. Here we define MSL protein abundance as a determinant of whether the MSL complex will spread in cis from an autosomal roX transgene. The number of expressed roX genes in a nucleus was inversely correlated with spreading from roX transgenes. We suggest a model in which MSL proteins assemble into active complexes by binding nascent roX transcripts. When MSL protein/roX RNA ratios are high, assembly will be efficient, and complexes may be completed while still tethered to the DNA template. We propose that this local production of MSL complexes determines the extent of spreading into flanking chromatin.


Asunto(s)
Cromatina/metabolismo , Compensación de Dosificación (Genética) , Proteínas de Drosophila , Drosophila/genética , Proteínas Nucleares/metabolismo , ARN Mensajero/genética , ARN no Traducido/genética , Factores de Transcripción/metabolismo , Animales , Cromosomas/metabolismo , ADN Complementario , Proteínas de Unión al ADN , Drosophila/metabolismo , Regulación de la Expresión Génica , Mutación , Proteínas Nucleares/genética , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Transgenes , Cromosoma X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA