Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nature ; 608(7923): 578-585, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35922512

RESUMEN

Hierarchical and parallel networks are fundamental structures of the mammalian brain1-8. During development, lower- and higher-order thalamic nuclei and many cortical areas in the visual system form interareal connections and build hierarchical dorsal and ventral streams9-13. One hypothesis for the development of visual network wiring involves a sequential strategy wherein neural connections are sequentially formed alongside hierarchical structures from lower to higher areas14-17. However, this sequential strategy would be inefficient for building the entire visual network comprising numerous interareal connections. We show that neural pathways from the mouse retina to primary visual cortex (V1) or dorsal/ventral higher visual areas (HVAs) through lower- or higher-order thalamic nuclei form as parallel modules before corticocortical connections. Subsequently, corticocortical connections among V1 and HVAs emerge to combine these modules. Retina-derived activity propagating the initial parallel modules is necessary to establish retinotopic inter-module connections. Thus, the visual network develops in a modular manner involving initial establishment of parallel modules and their subsequent concatenation. Findings in this study raise the possibility that parallel modules from higher-order thalamic nuclei to HVAs act as templates for cortical ventral and dorsal streams and suggest that the brain has an efficient strategy for the development of a hierarchical network comprising numerous areas.


Asunto(s)
Corteza Visual , Vías Visuales , Animales , Mapeo Encefálico , Ratones , Modelos Neurológicos , Retina/citología , Retina/fisiología , Núcleos Talámicos/citología , Núcleos Talámicos/fisiología , Corteza Visual/citología , Corteza Visual/fisiología , Vías Visuales/citología , Vías Visuales/fisiología
2.
Biochem Biophys Res Commun ; 678: 102-108, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37625269

RESUMEN

The extent to which resting-state hemodynamics reflects the underlying neural activity is still under debate. Especially in the delta frequency band (0.5-4 Hz), it is unclear whether the hemodynamics can directly track the dynamics of underlying neural activity. Based on a recent report showing that ketamine administration induced a 1-Hz neural activity oscillation in the retrosplenial cortex, we conducted simultaneous recordings of the calcium signal and hemodynamics in mice and examined whether the hemodynamics tracked the oscillatory neural activity. Although we observed that the oscillation induced by ketamine appeared in the calcium signal, no sign of oscillation was detected in the simultaneously recorded hemodynamics. Consistently, there was a notable decrease in the correlation between simultaneously recorded calcium signal and hemodynamics. However, on a much longer time scale (10-60 min), we unexpectedly observed an ultraslow increase of hemodynamic signals specifically in the same cortical region exhibiting the neural activity oscillation. These results indicated that hemodynamics cannot track the 1-Hz oscillation in neural activity, although the presence of neural activity oscillation was detectable on a longer timescale. Such ultraslow hemodynamics may be useful for detecting abnormal neural activity induced by psychotic drugs or mental disorders.


Asunto(s)
Calcio , Ketamina , Animales , Ratones , Ketamina/farmacología , Calcio de la Dieta , Giro del Cíngulo , Hemodinámica
3.
Cereb Cortex ; 31(2): 1307-1315, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33063102

RESUMEN

Integration of information processed separately in distributed brain regions is essential for brain functions. This integration is enabled by long-range projection neurons, and further, concerted interactions between long-range projections and local microcircuits are crucial. It is not well known, however, how this interaction is implemented in cortical circuits. Here, to decipher this logic, using callosal projection neurons (CPNs) in layer 2/3 of the mouse visual cortex as a model of long-range projections, we found that CPNs exhibited distinct response properties and fine-scale local connectivity patterns. In vivo 2-photon calcium imaging revealed that CPNs showed a higher ipsilateral (to their somata) eye preference, and that CPN pairs showed stronger signal/noise correlation than random pairs. Slice recordings showed CPNs were preferentially connected to CPNs, demonstrating the existence of projection target-dependent fine-scale subnetworks. Collectively, our results suggest that long-range projection target predicts response properties and local connectivity of cortical projection neurons.


Asunto(s)
Red Nerviosa/fisiología , Neuronas/fisiología , Estimulación Luminosa/métodos , Corteza Visual/fisiología , Vías Visuales/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/química , Neuronas/química , Técnicas de Cultivo de Órganos , Corteza Visual/química , Vías Visuales/química
4.
Cereb Cortex ; 29(4): 1496-1508, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29522092

RESUMEN

Resting-state functional connectivity (FC) has become a major functional magnetic resonance imaging method to study network organization of human brains. There has been recent interest in the temporal fluctuations of FC calculated using short time windows ("dynamic FC") because this method could provide information inaccessible with conventional "static" FC, which is typically calculated using the entire scan lasting several tens of minutes. Although multiple studies have revealed considerable temporal fluctuations in FC, it is still unclear whether the fluctuations of FC measured in hemodynamics reflect the dynamics of underlying neural activity. We addressed this question using simultaneous imaging of neuronal calcium and hemodynamic signals in mice and found coordinated temporal dynamics of calcium FC and hemodynamic FC measured in the same short time windows. Moreover, we found that variation in transient neuronal coactivation patterns was significantly related to temporal fluctuations of sliding window FC in hemodynamics. Finally, we show that the observed dynamics of FC cannot be fully accounted for by simulated data assuming stationary FC. These results provide evidence for the neuronal origin of dynamic FC and further suggest that information relevant to FC is condensed in temporally sparse events that can be extracted using a small number of time points.


Asunto(s)
Encéfalo/fisiología , Neuronas/fisiología , Acoplamiento Neurovascular/fisiología , Animales , Mapeo Encefálico/métodos , Señalización del Calcio , Hemodinámica , Ratones Transgénicos , Imagen Óptica , Procesamiento de Señales Asistido por Computador
5.
Proc Natl Acad Sci U S A ; 113(23): 6556-61, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27185944

RESUMEN

Resting-state functional connectivity (FC), which measures the correlation of spontaneous hemodynamic signals (HemoS) between brain areas, is widely used to study brain networks noninvasively. It is commonly assumed that spatial patterns of HemoS-based FC (Hemo-FC) reflect large-scale dynamics of underlying neuronal activity. To date, studies of spontaneous neuronal activity cataloged heterogeneous types of events ranging from waves of activity spanning the entire neocortex to flash-like activations of a set of anatomically connected cortical areas. However, it remains unclear how these various types of large-scale dynamics are interrelated. More importantly, whether each type of large-scale dynamics contributes to Hemo-FC has not been explored. Here, we addressed these questions by simultaneously monitoring neuronal calcium signals (CaS) and HemoS in the entire neocortex of mice at high spatiotemporal resolution. We found a significant relationship between two seemingly different types of large-scale spontaneous neuronal activity-namely, global waves propagating across the neocortex and transient coactivations among cortical areas sharing high FC. Different sets of cortical areas, sharing high FC within each set, were coactivated at different timings of the propagating global waves, suggesting that spatial information of cortical network characterized by FC was embedded in the phase of the global waves. Furthermore, we confirmed that such transient coactivations in CaS were indeed converted into spatially similar coactivations in HemoS and were necessary to sustain the spatial structure of Hemo-FC. These results explain how global waves of spontaneous neuronal activity propagating across large-scale cortical network contribute to Hemo-FC in the resting state.


Asunto(s)
Encéfalo/fisiología , Neuronas/fisiología , Animales , Encéfalo/anatomía & histología , Encéfalo/irrigación sanguínea , Mapeo Encefálico , Señalización del Calcio , Hemodinámica , Humanos , Potenciales de la Membrana , Ratones , Ratones Transgénicos , Modelos Neurológicos , Red Nerviosa/fisiología
6.
J Neurosci ; 37(39): 9424-9437, 2017 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-28847805

RESUMEN

Recent studies suggest that higher visual areas (HVAs) in the mouse visual cortex are segregated anatomically into two visual streams, likely analogous to the ventral and dorsal streams in primates. However, HVAs in mice have yet to be characterized functionally. Moreover, it is unknown when the functional segregation of HVAs occurs during development. Here, we investigated spatiotemporal selectivity of HVAs and their development using wide-field calcium imaging. We found that lateral HVAs in the anatomical ventral stream shared similar spatiotemporal selectivity, whereas the spatiotemporal selectivity of anterior and medial HVAs in the anatomical dorsal stream was not uniform and these areas were segregated functionally into multiple groups. This functional segregation of HVAs developed and reached an adult-like pattern ∼10 d after eye opening (EO). These results suggest, not only the functional segregation of ventral and dorsal streams, but also the presence of multiple substreams in the dorsal stream, and indicate that the functional segregation of visual streams occurs gradually after EO.SIGNIFICANCE STATEMENT Investigation of the spatiotemporal selectivity of nine higher visual areas (HVAs) in adult and developing mice revealed that lateral HVAs belonging to the putative ventral stream shared similar spatiotemporal selectivity, whereas the spatiotemporal selectivity of anterior and medial HVAs belonging to the putative dorsal stream was not uniform and these areas were segregated functionally into multiple groups. These results suggest the presence of multiple substreams within the putative dorsal stream for visuospatial processing. Furthermore, we found that initially immature functional segregation among HVAs developed to an adult-like pattern ∼10 d after eye opening. These results provide a foundation for using mouse HVAs as a model to understand parallel processing and its developmental mechanism.


Asunto(s)
Señalización del Calcio , Corteza Visual/crecimiento & desarrollo , Animales , Ratones , Corteza Visual/metabolismo , Corteza Visual/fisiología
7.
Biochem Biophys Res Commun ; 505(4): 1216-1222, 2018 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-30322614

RESUMEN

Astrocytes are known to contact with a great number of synapses and may integrate sensory inputs. In the ferret primary visual cortex, astrocytes respond to a visual stimulus with a delay of several seconds with respect to the surrounding neurons. However, in the mouse visual cortex, it remains unclear whether astrocytes respond to visual stimulations. In this study, using dual-color simultaneous in vivo two-photon calcium imaging of neurons and astrocytes in the awake mouse visual cortex, we examined the visual response of astrocytes and their precise response timing relative to the surrounding neurons. Neurons reliably responded to visual stimulations, whereas astrocytes often showed neuromodulator-mediated global activities, which largely masked small visual responses. Administration of the selective α1-adrenergic receptor antagonist prazosin substantially reduced such global astrocytic activities without affecting the neuronal visual responses. In the presence of prazosin, astrocytes showed weak but consistent visual responses mostly at their somata. Cross-correlation analysis estimated that the astrocytic visual responses were delayed by approximately 5 seconds relative to the surrounding neuronal responses. In conclusion, our research demonstrated that astrocytes in the primary visual cortex of awake mice responded to visual stimuli with a delay of several seconds relative to the surrounding neurons, which may indicate the existence of a common mechanism of neuron-astrocyte communication across species.


Asunto(s)
Astrocitos/metabolismo , Corteza Visual/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Astrocitos/efectos de los fármacos , Calcio/metabolismo , Masculino , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estimulación Luminosa , Prazosina/farmacología , Corteza Visual/citología
8.
Nat Methods ; 10(9): 889-95, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23852453

RESUMEN

Identifying the neuronal ensembles that respond to specific stimuli and mapping their projection patterns in living animals are fundamental challenges in neuroscience. To this end, we engineered a synthetic promoter, the enhanced synaptic activity-responsive element (E-SARE), that drives neuronal activity-dependent gene expression more potently than other existing immediate-early gene promoters. Expression of a drug-inducible Cre recombinase downstream of E-SARE enabled imaging of neuronal populations that respond to monocular visual stimulation and tracking of their long-distance thalamocortical projections in living mice. Targeted cell-attached recordings and calcium imaging of neurons in sensory cortices revealed that E-SARE reporter expression correlates with sensory-evoked neuronal activity at the single-cell level and is highly specific to the type of stimuli presented to the animals. This activity-dependent promoter can expand the repertoire of genetic approaches for high-resolution anatomical and functional analysis of neural circuits.


Asunto(s)
Biología Molecular/métodos , Neuronas/fisiología , Regiones Promotoras Genéticas , Elementos de Respuesta , Animales , Axones , Calcio/análisis , Calcio/metabolismo , Células Cultivadas , Dependovirus/genética , Femenino , Regulación de la Expresión Génica , Genes Reporteros , Cuerpos Geniculados/citología , Cuerpos Geniculados/fisiología , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Procesamiento de Imagen Asistido por Computador , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Imagen Molecular/métodos , Estimulación Luminosa , Ratas , Ratas Sprague-Dawley , Análisis de la Célula Individual/métodos , Corteza Visual/citología , Corteza Visual/fisiología
9.
Neuroimage ; 65: 488-98, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23063444

RESUMEN

Visual information is largely processed through two pathways in the primate brain: an object pathway from the primary visual cortex to the temporal cortex (ventral stream) and a spatial pathway to the parietal cortex (dorsal stream). Whether and to what extent dissociation exists in the human prefrontal cortex (PFC) has long been debated. We examined anatomical connections from functionally defined areas in the temporal and parietal cortices to the PFC, using noninvasive functional and diffusion-weighted magnetic resonance imaging. The right inferior frontal gyrus (IFG) received converging input from both streams, while the right superior frontal gyrus received input only from the dorsal stream. Interstream functional connectivity to the IFG was dynamically recruited only when both object and spatial information were processed. These results suggest that the human PFC receives dissociated and converging visual pathways, and that the right IFG region serves as an integrator of the two types of information.


Asunto(s)
Mapeo Encefálico , Memoria a Corto Plazo/fisiología , Corteza Prefrontal/fisiología , Vías Visuales/fisiología , Adulto , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Masculino , Adulto Joven
10.
Front Neural Circuits ; 17: 1155195, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37139079

RESUMEN

External sensory inputs propagate from lower-order to higher-order brain areas, and the hierarchical neural network supporting this information flow is a fundamental structure of the mammalian brain. In the visual system, multiple hierarchical pathways process different features of the visual information in parallel. The brain can form this hierarchical structure during development with few individual differences. A complete understanding of this formation mechanism is one of the major goals of neuroscience. For this purpose, it is necessary to clarify the anatomical formation process of connections between individual brain regions and to elucidate the molecular and activity-dependent mechanisms that instruct these connections in each areal pair. Over the years, researchers have unveiled developmental mechanisms of the lower-order pathway from the retina to the primary visual cortex. The anatomical formation of the entire visual network from the retina to the higher visual cortex has recently been clarified, and higher-order thalamic nuclei are gaining attention as key players in this process. In this review, we summarize the network formation process in the mouse visual system, focusing on projections from the thalamic nuclei to the primary and higher visual cortices, which are formed during the early stages of development. Then, we discuss how spontaneous retinal activity that propagates through thalamocortical pathways is essential for the formation of corticocortical connections. Finally, we discuss the possible role of higher-order thalamocortical projections as template structures in the functional maturation of visual pathways that process different visual features in parallel.


Asunto(s)
Núcleos Talámicos , Corteza Visual , Animales , Ratones , Vías Visuales , Vías Nerviosas , Tálamo , Mamíferos
11.
Neural Netw ; 167: 875-889, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37722983

RESUMEN

Recent studies in deep neural networks have shown that injecting random noise in the input layer of the networks contributes towards ℓp-norm-bounded adversarial perturbations. However, to defend against unrestricted adversarial examples, most of which are not ℓp-norm-bounded in the input layer, such input-layer random noise may not be sufficient. In the first part of this study, we generated a novel class of unrestricted adversarial examples termed feature-space adversarial examples. These examples are far from the original data in the input space but adjacent to the original data in a hidden-layer feature space and far again in the output layer. In the second part of this study, we empirically showed that while injecting random noise in the input layer was unable to defend these feature-space adversarial examples, they were defended by injecting random noise in the hidden layer. These results highlight the novel benefit of stochasticity in higher layers, in that it is useful for defending against these feature-space adversarial examples, a class of unrestricted adversarial examples.


Asunto(s)
Redes Neurales de la Computación
12.
Aging Cell ; 22(9): e13925, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37476844

RESUMEN

Neurons decline in their functionality over time, and age-related neuronal alterations are associated with phenotypes of neurodegenerative diseases. In nonneural tissues, an infolded nuclear shape has been proposed as a hallmark of aged cells and neurons with infolded nuclei have also been reported to be associated with neuronal activity. Here, we performed time-lapse imaging in the visual cortex of Nex-Cre;SUN1-GFP mice. Nuclear infolding was observed within 10 min of stimulation in young nuclei, while the aged nuclei were already infolded pre-stimulation and showed reduced dynamics of the morphology. In young nuclei, the depletion of the stimuli restored the nucleus to a spherical shape and reduced the dynamic behavior, suggesting that nuclear infolding is a reversible process. We also found the aged nucleus to be stiffer than the young one, further relating to the age-associated loss of nuclear shape dynamics. We reveal temporal changes in the nuclear shape upon external stimulation and observe that these morphological dynamics decrease with age.


Asunto(s)
Neuronas , Corteza Visual , Ratones , Animales , Corteza Visual/fisiología
13.
Nature ; 442(7105): 925-8, 2006 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-16906137

RESUMEN

In the visual cortex of higher mammals, neurons are arranged across the cortical surface in an orderly map of preferred stimulus orientations. This map contains 'orientation pinwheels', structures that are arranged like the spokes of a wheel such that orientation changes continuously around a centre. Conventional optical imaging first demonstrated these pinwheels, but the technique lacked the spatial resolution to determine the response properties and arrangement of cells near pinwheel centres. Electrophysiological recordings later demonstrated sharply selective neurons near pinwheel centres, but it remained unclear whether they were arranged randomly or in an orderly fashion. Here we use two-photon calcium imaging in vivo to determine the microstructure of pinwheel centres in cat visual cortex with single-cell resolution. We find that pinwheel centres are highly ordered: neurons selective to different orientations are clearly segregated even in the very centre. Thus, pinwheel centres truly represent singularities in the cortical map. This highly ordered arrangement at the level of single cells suggests great precision in the development of cortical circuits underlying orientation selectivity.


Asunto(s)
Neuronas/citología , Neuronas/fisiología , Corteza Visual/citología , Corteza Visual/fisiología , Animales , Gatos , Electrofisiología , Modelos Neurológicos , Morfogénesis , Estimulación Luminosa , Corteza Visual/crecimiento & desarrollo
14.
Cereb Cortex ; 21(1): 200-11, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20494968

RESUMEN

The immature cortex (cortical plate [CP]) and underlying subplate (SP), a transient cell layer just below the CP, play critical roles in the formation of intracerebral connections. The purpose of this study was to examine the diffusion characteristics of the developing cortex and subcortical structures and compare to histology. We obtained high-resolution diffusion spectrum images of postnatal day (P) 0 (newborn), P35 (pediatric), and P100 (adult) cat brains, performed tractography analysis, and correlated with histological findings. Tractography revealed radial organization and radial afferent/efferent tracts not only in the CP but also in external SP at P0. Radial organization persisted only in the cortex but decreased at P35 and P100. Radial organization correlated with radial cellular organization, with highest cellular density at P0 (Cresyl Violet staining). At P0, the internal SP contained abundant corticocortical and projection tractography pathways, crossing at wide angles in areas with no myelination by Luxol Fast Blue staining. At P35 and P100, increased directional coherence of white matter was observed, with fewer local tracts, but more long association pathways. These results suggest that diffusion tractography can differentially characterize internal and external SP zones and their transition into mature cortical pathways.


Asunto(s)
Axones/fisiología , Imagen de Difusión Tensora/métodos , Neocórtex/anatomía & histología , Neocórtex/crecimiento & desarrollo , Vías Nerviosas/anatomía & histología , Vías Nerviosas/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Mapeo Encefálico/métodos , Gatos , Diferenciación Celular/fisiología , Procesamiento de Imagen Asistido por Computador/métodos
15.
Front Neural Circuits ; 16: 825735, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35296036

RESUMEN

Neurons in the mouse primary visual cortex (V1) exhibit characteristic response selectivity to visual stimuli, such as orientation, direction and spatial frequency selectivity. Since V1 receives thalamic visual inputs from the lateral geniculate nucleus (LGN) and lateral posterior nucleus (LPN), the response selectivity of the V1 neurons could be influenced mostly by these inputs. However, it remains unclear how these two thalamic inputs contribute to the response selectivity of the V1 neurons. In this study, we examined the orientation, direction and spatial frequency selectivity of the LPN axons projecting to V1 and compared their response selectivity with our previous results of the LGN axons in mice. For this purpose, the genetically encoded calcium indicator, GCaMP6s, was locally expressed in the LPN using the adeno-associated virus (AAV) infection method. Visual stimulations were presented, and axonal imaging was conducted in V1 by two-photon calcium imaging in vivo. We found that LPN axons primarily terminate in layers 1 and 5 and, to a lesser extent, in layers 2/3 and 4 of V1, while LGN axons mainly terminate in layer 4 and, to a lesser extent, in layers 1 and 2/3 of V1. LPN axons send highly orientation- and direction-selective inputs to all the examined layers in V1, whereas LGN axons send highly orientation- and direction-selective inputs to layers 1 and 2/3 but low orientation and direction selective inputs to layer 4 in V1. The distribution of preferred orientation and direction was strongly biased toward specific orientations and directions in LPN axons, while weakly biased to cardinal orientations and directions in LGN axons. In spatial frequency tuning, both the LPN and LGN axons send selective inputs to V1. The distribution of preferred spatial frequency was more diverse in the LPN axons than in the LGN axons. In conclusion, LPN inputs to V1 are functionally different from LGN inputs and may have different roles in the orientation, direction and spatial frequency tuning of the V1 neurons.


Asunto(s)
Corteza Visual , Animales , Axones , Cuerpos Geniculados/fisiología , Núcleos Talámicos Laterales , Ratones , Estimulación Luminosa , Corteza Visual Primaria , Corteza Visual/fisiología , Vías Visuales/fisiología
16.
Elife ; 112022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-36001081

RESUMEN

The developing neocortex exhibits spontaneous network activity with various synchrony levels, which has been implicated in the formation of cortical circuits. We previously reported that the development of callosal axon projections, one of the major long-range axonal projections in the brain, is activity dependent. However, what sort of activity and when activity is indispensable are not known. Here, using a genetic method to manipulate network activity in a stage-specific manner, we demonstrated that network activity contributes to callosal axon projections in the mouse visual cortex during a 'critical period': restoring neuronal activity during that period resumed the projections, whereas restoration after the period failed. Furthermore, in vivo Ca2+ imaging revealed that the projections could be established even without fully restoring highly synchronous activity. Overall, our findings suggest that spontaneous network activity is selectively required during a critical developmental time window for the formation of long-range axonal projections in the cortex.


Asunto(s)
Cuerpo Calloso , Corteza Visual , Animales , Axones/fisiología , Cuerpo Calloso/fisiología , Ratones , Neuronas/fisiología , Corteza Visual/fisiología
17.
Neuron ; 54(6): 961-72, 2007 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-17582335

RESUMEN

Experience-dependent plasticity is crucial for the precise formation of neuronal connections during development. It is generally thought to depend on Hebbian forms of synaptic plasticity. In addition, neurons possess other, homeostatic means of compensating for changes in sensory input, but their role in cortical plasticity is unclear. We used two-photon calcium imaging to investigate whether homeostatic response regulation contributes to changes of eye-specific responsiveness after monocular deprivation (MD) in mouse visual cortex. Short MD durations decreased deprived-eye responses in neurons with binocular input. Longer MD periods strengthened open-eye responses, and surprisingly, also increased deprived-eye responses in neurons devoid of open-eye input. These bidirectional response adjustments effectively preserved the net visual drive for each neuron. Our finding that deprived-eye responses were either weaker or stronger after MD, depending on the amount of open-eye input a cell received, argues for both Hebbian and homeostatic mechanisms regulating neuronal responsiveness during experience-dependent plasticity.


Asunto(s)
Predominio Ocular , Ojo/inervación , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Corteza Visual/citología , Potenciales de Acción/efectos de la radiación , Animales , Animales Recién Nacidos , Mapeo Encefálico , Calcio/metabolismo , Párpados/inervación , Párpados/fisiología , Ratones , Ratones Endogámicos C57BL , Estimulación Luminosa/métodos , Privación Sensorial/fisiología , Factores de Tiempo , Visión Binocular/fisiología , Visión Monocular/fisiología , Vías Visuales/fisiología
18.
Nature ; 433(7026): 597-603, 2005 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-15660108

RESUMEN

Neurons in the cerebral cortex are organized into anatomical columns, with ensembles of cells arranged from the surface to the white matter. Within a column, neurons often share functional properties, such as selectivity for stimulus orientation; columns with distinct properties, such as different preferred orientations, tile the cortical surface in orderly patterns. This functional architecture was discovered with the relatively sparse sampling of microelectrode recordings. Optical imaging of membrane voltage or metabolic activity elucidated the overall geometry of functional maps, but is averaged over many cells (resolution >100 microm). Consequently, the purity of functional domains and the precision of the borders between them could not be resolved. Here, we labelled thousands of neurons of the visual cortex with a calcium-sensitive indicator in vivo. We then imaged the activity of neuronal populations at single-cell resolution with two-photon microscopy up to a depth of 400 microm. In rat primary visual cortex, neurons had robust orientation selectivity but there was no discernible local structure; neighbouring neurons often responded to different orientations. In area 18 of cat visual cortex, functional maps were organized at a fine scale. Neurons with opposite preferences for stimulus direction were segregated with extraordinary spatial precision in three dimensions, with columnar borders one to two cells wide. These results indicate that cortical maps can be built with single-cell precision.


Asunto(s)
Corteza Visual/citología , Corteza Visual/fisiología , Análisis de Varianza , Animales , Señalización del Calcio/fisiología , Gatos , Electrofisiología , Neuronas/citología , Neuronas/fisiología , Estimulación Luminosa , Ratas , Ratas Long-Evans , Corteza Visual/anatomía & histología
19.
Nat Commun ; 12(1): 2315, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33875667

RESUMEN

The clustering of neurons with similar response properties is a conspicuous feature of neocortex. In primary visual cortex (V1), maps of several properties like orientation preference are well described, but the functional architecture of color, central to visual perception in trichromatic primates, is not. Here we used two-photon calcium imaging in macaques to examine the fine structure of chromatic representation and found that neurons responsive to spatially uniform, chromatic stimuli form unambiguous clusters that coincide with blobs. Further, these responsive groups have marked substructure, segregating into smaller ensembles or micromaps with distinct chromatic signatures that appear columnar in upper layer 2/3. Spatially structured chromatic stimuli revealed maps built on the same micromap framework but with larger subdomains that go well beyond blobs. We conclude that V1 has an architecture for color representation that switches between blobs and a combined blob/interblob system based on the spatial content of the visual scene.


Asunto(s)
Percepción de Color/fisiología , Macaca mulatta/fisiología , Neuronas/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Animales , Color , Femenino , Masculino , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Estimulación Luminosa/métodos , Corteza Visual/citología
20.
Neuroimage ; 49(2): 1231-40, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19747553

RESUMEN

Examination of the three-dimensional axonal pathways in the developing brain is key to understanding the formation of cerebral connectivity. By tracing fiber pathways throughout the entire brain, diffusion tractography provides information that cannot be achieved by conventional anatomical MR imaging or histology. However, standard diffusion tractography (based on diffusion tensor imaging, or DTI) tends to terminate in brain areas with low water diffusivity, indexed by low diffusion fractional anisotropy (FA), which can be caused by crossing fibers as well as fibers with less myelin. For this reason, DTI tractography is not effective for delineating the structural changes that occur in the developing brain, where the process of myelination is incomplete, and where crossing fibers exist in greater numbers than in the adult brain. Unlike DTI, diffusion spectrum imaging (DSI) can define multiple directions of water diffusivity; as such, diffusion tractography based on DSI provides marked flexibility for delineation of fiber tracts in areas where the fiber architecture is complex and multidirectional, even in areas of low FA. In this study, we showed that FA values were lower in the white matter of newborn (postnatal day 0; P0) cat brains than in the white matter of infant (P35) and juvenile (P100) cat brains. These results correlated well with histological myelin stains of the white matter: the newborn kitten brain has much less myelin than that found in cat brains at later stages of development. Using DSI tractography, we successfully identified structural changes in thalamo-cortical and cortico-cortical association tracts in cat brains from one stage of development to another. In newborns, the main body of the thalamo-cortical tract was smooth, and fibers branching from it were almost straight, while the main body became more complex and branching fibers became curved reflecting gyrification in the older cats. Cortico-cortical tracts in the temporal lobe were smooth in newborns, and they formed a sharper angle in the later stages of development. The cingulum bundle and superior longitudinal fasciculus became more visible with time. Within the first month after birth, structural changes occurred in these tracts that coincided with the formation of the gyri. These results show that DSI tractography has the potential for mapping morphological changes in low FA areas associated with growth and development. The technique may also be applicable to the study of other forms of brain plasticity, including future studies in vivo.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Envejecimiento/fisiología , Animales , Animales Recién Nacidos , Anisotropía , Benzoxazinas , Gatos , Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional/métodos , Indoles , Vaina de Mielina/fisiología , Fibras Nerviosas Mielínicas/fisiología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/fisiología , Oxazinas , Tálamo/anatomía & histología , Tálamo/crecimiento & desarrollo , Tálamo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA