Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 181(5): 1036-1045.e9, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32416070

RESUMEN

Viral pandemics, such as the one caused by SARS-CoV-2, pose an imminent threat to humanity. Because of its recent emergence, there is a paucity of information regarding viral behavior and host response following SARS-CoV-2 infection. Here we offer an in-depth analysis of the transcriptional response to SARS-CoV-2 compared with other respiratory viruses. Cell and animal models of SARS-CoV-2 infection, in addition to transcriptional and serum profiling of COVID-19 patients, consistently revealed a unique and inappropriate inflammatory response. This response is defined by low levels of type I and III interferons juxtaposed to elevated chemokines and high expression of IL-6. We propose that reduced innate antiviral defenses coupled with exuberant inflammatory cytokine production are the defining and driving features of COVID-19.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Virus ARN/inmunología , Animales , COVID-19 , Células Cultivadas , Quimiocinas/genética , Quimiocinas/inmunología , Infecciones por Coronavirus/genética , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Inflamación/virología , Interferones/genética , Interferones/inmunología , Pandemias , Neumonía Viral/genética , Virus ARN/clasificación , SARS-CoV-2 , Transcripción Genética
2.
Immunity ; 54(3): 557-570.e5, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33577760

RESUMEN

The emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant global morbidity, mortality, and societal disruption. A better understanding of virus-host interactions may potentiate therapeutic insights toward limiting this infection. Here we investigated the dynamics of the systemic response to SARS-CoV-2 in hamsters by histological analysis and transcriptional profiling. Infection resulted in consistently high levels of virus in the upper and lower respiratory tracts and sporadic occurrence in other distal tissues. A longitudinal cohort revealed a wave of inflammation, including a type I interferon (IFN-I) response, that was evident in all tissues regardless of viral presence but was insufficient to prevent disease progression. Bolstering the antiviral response with intranasal administration of recombinant IFN-I reduced viral disease, prevented transmission, and lowered inflammation in vivo. This study defines the systemic host response to SARS-CoV-2 infection and supports use of intranasal IFN-I as an effective means of early treatment.


Asunto(s)
COVID-19/metabolismo , COVID-19/virología , Interacciones Huésped-Patógeno , Interferón Tipo I/metabolismo , SARS-CoV-2/fisiología , Animales , Biopsia , COVID-19/genética , COVID-19/inmunología , Cricetinae , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Interferón Tipo I/genética , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Especificidad de Órganos/inmunología , Virulencia , Replicación Viral/inmunología
3.
J Virol ; 97(4): e0181322, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36943134

RESUMEN

Despite lacking a DNA intermediate, orthomyxoviruses complete their replication cycle in the nucleus and generate multiple transcripts by usurping the host splicing machinery. This biology results in dynamic changes of relative viral transcripts over time and dictates the replicative phase of the infection. Here, we demonstrate that the family of archaeal L7Ae proteins uniquely inhibit the splicing biology of influenza A virus, influenza B virus, and Salmon isavirus, revealing a common strategy utilized by Orthomyxoviridae members to achieve this dynamic. L7Ae-mediated inhibition of virus biology was lost with the generation of a splicing-independent strain of influenza A virus and attempts to select for an escape mutant resulted in variants that conformed to host splicing biology at significant cost to their overall fitness. As L7Ae recognizes conventional kink turns in various RNAs, these data implicate the formation of a similar structure as a shared strategy adopted by this virus family to coordinate their replication cycle. IMPORTANCE Here, we demonstrate that a family of proteins from archaea specifically inhibit this splicing biology of all tested members of the Orthomyxoviridae family. We show that this inhibition extends to influenza A virus, influenza B virus, and isavirus genera, while having no significant impact on the mammalian transcriptome or proteome. Attempts to generate an escape mutant against L7Ae-mediated inhibition resulted in mutations surrounding the viral splice sites and a significant loss of viral fitness. Together, these findings reveal a unique biology shared among diverse members of the Orthomyxoviridae family that may serve as a means to generate future universal therapeutics.


Asunto(s)
Proteínas Arqueales , Orthomyxoviridae , Empalme del ARN , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Orthomyxoviridae/fisiología , Empalme del ARN/fisiología , Humanos , Animales , Perros , Células Vero , Chlorocebus aethiops , Células A549 , Células HEK293 , Interacciones Microbiota-Huesped , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/virología
4.
J Infect Chemother ; 30(6): 488-493, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38042298

RESUMEN

INTRODUCTION: Tecovirimat's application in treating mpox remains under-researched, leaving gaps in clinical and virological understanding. METHODS: The Tecopox study in Japan evaluated the efficacy and safety of tecovirimat in patients with smallpox or mpox, who were divided into oral tecovirimat and control groups. Patients with mpox enrolled between June 28, 2022, and April 30, 2023, were included. Demographic and clinical details along with blood, urine, pharyngeal swab, and skin lesion samples were gathered for viral analysis. A multivariable Tobit regression model was employed to identify factors influencing prolonged viral detection. RESULTS: Nineteen patients were allocated to the tecovirimat group, and no patients were allocated to the control group. The median age was 38.5 years, and all patients were males. Ten patients (52.6%) were infected with human immunodeficiency virus (HIV). Sixteen patients (84.2%) had severe disease. Nine of the 15 patients (60.0%) (four patients withdrew before day 14) had negative PCR results for skin lesion specimens 14 days after inclusion. The mortality rates were 0% on days 14 and 30. No severe adverse events were reported. HIV status and the number of days from symptom onset to tecovirimat administration were associated with lower Ct values (p = 0.027 and p < 0.001, respectively). The median number of days when PCR testing did not detect the mpox virus in each patient was 19.5 days. CONCLUSION: Early tecovirimat administration might reduce viral shedding duration, thereby mitigating infection spread. Moreover, patients infected with HIV showed prolonged viral shedding, increasing the transmission risk compared to those without HIV.

5.
J Virol ; 96(15): e0076522, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35862681

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) represent two highly transmissible airborne pathogens with pandemic capabilities. Although these viruses belong to separate virus families-SARS-CoV-2 is a member of the family Coronaviridae, while IAV is a member of the family Orthomyxoviridae-both have shown zoonotic potential, with significant animal reservoirs in species in close contact with humans. The two viruses are similar in their capacity to infect human airways, and coinfections resulting in significant morbidity and mortality have been documented. Here, we investigate the interaction between SARS-CoV-2 USA-WA1/2020 and influenza H1N1 A/California/04/2009 virus during coinfection. Competition assays in vitro were performed in susceptible cells that were either interferon type I/III (IFN-I/-III) nonresponsive or IFN-I/-III responsive, in addition to an in vivo golden hamster model. We find that SARS-CoV-2 infection does not interfere with IAV biology in vivo, regardless of timing between the infections. In contrast, we observe a significant loss of SARS-CoV-2 replication following IAV infection. The latter phenotype correlates with increased levels of IFN-I/-III and immune priming that interferes with the kinetics of SARS-CoV-2 replication. Together, these data suggest that cocirculation of SARS-CoV-2 and IAV is unlikely to result in increased severity of disease. IMPORTANCE The human population now has two circulating respiratory RNA viruses with high pandemic potential, namely, SARS-CoV-2 and influenza A virus. As both viruses infect the airways and can result in significant morbidity and mortality, it is imperative that we also understand the consequences of getting coinfected. Here, we demonstrate that the host response to influenza A virus uniquely interferes with SARS-CoV-2 biology although the inverse relationship is not evident. Overall, we find that the host response to both viruses is comparable to that to SARS-CoV-2 infection alone.


Asunto(s)
COVID-19 , Coinfección , Reactividad Cruzada , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , SARS-CoV-2 , Replicación Viral , Animales , COVID-19/inmunología , COVID-19/mortalidad , COVID-19/virología , Coinfección/inmunología , Coinfección/virología , Reactividad Cruzada/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Interferones/inmunología , Mesocricetus/inmunología , Mesocricetus/virología , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/inmunología , Replicación Viral/inmunología
6.
J Virol ; 89(16): 8661-5, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26041295

RESUMEN

Influenza A virus PA-X comprises an N-terminal PA endonuclease domain and a C-terminal PA-X-specific domain. PA-X reduces host and viral mRNA accumulation via its endonuclease function. Here, we found that the N-terminal 15 amino acids, particularly six basic amino acids, in the C-terminal PA-X-specific region are important for PA-X shutoff activity. These six basic amino acids enabled a PA deletion mutant to suppress protein expression at a level comparable to that of wild-type PA-X.


Asunto(s)
Endonucleasas/genética , Virus de la Influenza A/enzimología , Proteínas Represoras/genética , Proteínas no Estructurales Virales/genética , Secuencia de Aminoácidos , Secuencia de Bases , Endonucleasas/metabolismo , Luciferasas , Datos de Secuencia Molecular , Mutagénesis , Sistemas de Lectura Abierta/genética , Estructura Terciaria de Proteína , Proteínas Represoras/metabolismo , Análisis de Secuencia de ADN , Proteínas no Estructurales Virales/metabolismo
7.
Cell Rep ; 39(13): 111002, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35714615

RESUMEN

Morbidity and mortality in response to SARS-CoV-2 infection are significantly elevated in people of advanced age. To understand the underlying biology of this phenotype, we utilize the golden hamster model to compare how the innate and adaptive immune responses to SARS-CoV-2 infection differed between younger and older animals. We find that while both hamster cohorts showed similar virus kinetics in the lungs, the host response in older animals was dampened, with diminished tissue repair in the respiratory tract post-infection. Characterization of the adaptive immune response also revealed age-related differences, including fewer germinal center B cells in older hamsters, resulting in reduced potency of neutralizing antibodies. Moreover, older animals demonstrate elevated suppressor T cells and neutrophils in the respiratory tract, correlating with an increase in TGF-ß and IL-17 induction. Together, these data support that diminished immunity is one of the underlying causes of age-related morbidity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Inmunidad Adaptativa , Animales , Anticuerpos Neutralizantes , Cricetinae , Humanos , Mesocricetus
8.
Sci Transl Med ; 14(664): eabq3059, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35857629

RESUMEN

The host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in prolonged pathologies collectively referred to as post-acute sequalae of COVID-19 (PASC) or long COVID. To better understand the mechanism underlying long COVID biology, we compared the short- and long-term systemic responses in the golden hamster after either SARS-CoV-2 or influenza A virus (IAV) infection. Results demonstrated that SARS-CoV-2 exceeded IAV in its capacity to cause permanent injury to the lung and kidney and uniquely affected the olfactory bulb (OB) and olfactory epithelium (OE). Despite a lack of detectable infectious virus, the OB and OE demonstrated myeloid and T cell activation, proinflammatory cytokine production, and an interferon response that correlated with behavioral changes extending a month after viral clearance. These sustained transcriptional changes could also be corroborated from tissue isolated from individuals who recovered from COVID-19. These data highlight a molecular mechanism for persistent COVID-19 symptomology and provide a small animal model to explore future therapeutics.


Asunto(s)
COVID-19 , Animales , COVID-19/complicaciones , Cricetinae , Humanos , Interferones , Mesocricetus , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
9.
Sci Immunol ; 6(66): eabm3131, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34699266

RESUMEN

SARS-CoV-2 has caused morbidity and mortality across the globe. As the virus spreads, new variants are arising that show enhanced capacity to bypass preexisting immunity. To understand the memory response to SARS-CoV-2, here, we monitored SARS-CoV-2­specific T and B cells in a longitudinal study of infected and recovered golden hamsters (Mesocricetus auratus). We demonstrated that engagement of the innate immune system after SARS-CoV-2 infection was delayed but was followed by a pronounced adaptive response. Moreover, T cell adoptive transfer conferred a reduction in virus levels and rapid induction of SARS-CoV-2­specific B cells, demonstrating that both lymphocyte populations contributed to the overall response. Reinfection of recovered animals with a SARS-CoV-2 variant of concern showed that SARS-CoV-2­specific T and B cells could effectively control the infection that associated with the rapid induction of neutralizing antibodies but failed to block transmission to both naïve and seroconverted animals. These data suggest that the adaptive immune response to SARS-CoV-2 is sufficient to provide protection to the host, independent of the emergence of variants.


Asunto(s)
COVID-19/inmunología , Modelos Animales de Enfermedad , Memoria Inmunológica/inmunología , SARS-CoV-2/inmunología , Replicación Viral/inmunología , Inmunidad Adaptativa/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Linfocitos B/virología , COVID-19/virología , Cricetinae , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata/inmunología , Mesocricetus , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Linfocitos T/inmunología , Linfocitos T/virología , Replicación Viral/genética
10.
Nat Biomed Eng ; 5(8): 815-829, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33941899

RESUMEN

The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential.


Asunto(s)
Antivirales/farmacología , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Prueba de COVID-19/métodos , Dispositivos Laboratorio en un Chip , Animales , COVID-19/diagnóstico , COVID-19/virología , Línea Celular , Cricetinae , Femenino , Proteínas Fluorescentes Verdes , Humanos , Masculino , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
11.
Front Microbiol ; 10: 432, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30894843

RESUMEN

The influenza virus protein PA-X modulates the host immune responses and viral pathogenicity through suppression of host protein expression. The endonuclease active site in the N-terminal region, the basic amino acid cluster in the C-terminal PA-X-specific region, and N-terminal acetylation of PA-X by NatB are important for the shutoff activity of PA-X. Here, we focused on the shutoff activity of PA-X derived from the A/California/04/2009 and A/WSN/33 viruses because these two PA-X proteins differ in their shutoff activity. Mutagenesis analysis revealed that proline and serine at positions 28 and 65, respectively, play a central role in this difference. Furthermore, we found that P28 and S65 also affect the shutoff activity of PA-X derived from other influenza virus subtypes. These data demonstrate that P28 and S65 contribute to enhanced shutoff activity of PA-X.

12.
Virology ; 516: 71-75, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29331676

RESUMEN

The influenza A virus protein PA-X comprises an N-terminal PA region and a C-terminal PA-X-specific region. PA-X suppresses host gene expression, termed shutoff, via mRNA cleavage. Although the endonuclease active site in the N-terminal PA region of PA-X and basic amino acids in the C-terminal PA-X-specific region are known to be important for PA-X shutoff activity, other amino acids may also play a role. Here, we used yeast to identify novel amino acids of PA-X that are important for PA-X shutoff activity. Unlike wild-type PA-X, most PA-X mutants predominantly localized in the cytoplasm, indicating that these mutations decreased the shutoff activity of PA-X by affecting PA-X translocation to the nucleus. Mapping of the identified amino acids onto the N-terminal structure of PA revealed that some of them likely contribute to the formation of the endonuclease active site of PA.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/enzimología , Gripe Humana/genética , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Interacciones Huésped-Patógeno , Humanos , Subtipo H1N1 del Virus de la Influenza A/química , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/virología , Datos de Secuencia Molecular , Unión Proteica , Transporte de Proteínas , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas no Estructurales Virales/genética
13.
Cell Rep ; 24(4): 851-860, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-30044982

RESUMEN

N-terminal acetylation is a major posttranslational modification in eukaryotes catalyzed by N-terminal acetyltransferases (NATs), NatA through NatF. Although N-terminal acetylation modulates diverse protein functions, little is known about its roles in virus replication. We found that NatB, which comprises NAA20 and NAA25, is involved in the shutoff activity of influenza virus PA-X. The shutoff activity of PA-X was suppressed in NatB-deficient cells, and PA-X mutants that are not acetylated by NatB showed reduced shutoff activities. We also evaluated the importance of N-terminal acetylation of PA, because PA-X shares its N-terminal sequence with PA. Viral polymerase activity was reduced in NatB-deficient cells. Moreover, mutant PAs that are not acetylated by NatB lost their function in the viral polymerase complex. Taken together, our findings demonstrate that N-terminal acetylation is required for the shutoff activity of PA-X and for viral polymerase activity.


Asunto(s)
Acetiltransferasas/metabolismo , Virus de la Influenza A/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas no Estructurales Virales/metabolismo , Acetilación , Células HEK293 , Humanos
14.
Vaccine ; 35(15): 1892-1897, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28285982

RESUMEN

Vaccination is the first line of protection against influenza virus infection in humans. Although inactivated and live-attenuated vaccines are available, each vaccine has drawbacks in terms of immunogenicity and safety. To overcome these issues, our group has developed a replication-incompetent PB2-knockout (PB2-KO) influenza virus that replicates only in PB2-expressing cells. Here we generated PB2-KO viruses possessing the hemagglutinin (HA) and neuraminidase (NA) segments from H1N1pdm09 or type B viruses and tested their vaccine potential. The two PB2-KO viruses propagated efficiently in PB2-expressing cells, and expressed chimeric HA as expected. Virus-specific IgG and IgA antibodies were detected in mice immunized with the viruses, and the immunized mice showed milder clinical signs and/or lower virus replication levels in the respiratory tract upon virus challenge. Our results indicate that these PB2-KO viruses have potential as vaccine candidates.


Asunto(s)
Técnicas de Inactivación de Genes , Subtipo H1N1 del Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Vacunas contra la Influenza/inmunología , Proteínas Virales/genética , Animales , Anticuerpos Antivirales/sangre , Modelos Animales de Enfermedad , Femenino , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Subtipo H1N1 del Virus de la Influenza A/genética , Virus de la Influenza B/genética , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/genética , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/prevención & control , Sistema Respiratorio/virología , Carga Viral
15.
EBioMedicine ; 17: 182-191, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28286060

RESUMEN

Many broadly reactive human monoclonal antibodies against the hemagglutinin (HA) stem of influenza A virus have been developed for therapeutic applications. These antibodies typically inhibit viral entry steps, especially the HA conformational change that is required for membrane fusion. To better understand the mechanisms by which such antibodies inhibit viral replication, we established broadly reactive human anti-HA stem antibodies and determined the properties of these antibodies by examining their reactivity with 18 subtypes of HA, evaluating their in vivo protective efficacy, identifying their epitopes, and characterizing their inhibitory mechanisms. Among the eight human monoclonal antibodies we generated, which recognized at least 3 subtypes of the soluble HA antigens tested, clone S9-1-10/5-1 reacted with 18 subtypes of HA and protected mice from lethal infection with H1N1pdm09, H3N2, H5N1, and H7N9 viruses. This antibody recognized the HA2 helix A in the HA stem, and inhibited virus particle release from infected cells but did not block viral entry completely. These results show that broadly reactive human anti-HA stem antibodies can exhibit protective efficacy by inhibiting virus particle release. These findings expand our knowledge of the mechanisms by which broadly reactive stem-targeting antibodies inhibit viral replication and provide valuable information for universal vaccine development.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Hemaglutininas/inmunología , Virus de la Influenza A/fisiología , Liberación del Virus , Animales , Afinidad de Anticuerpos , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Perros , Epítopos/inmunología , Células HEK293 , Células HeLa , Hemaglutininas/química , Hemaglutininas/genética , Humanos , Virus de la Influenza A/inmunología , Células de Riñón Canino Madin Darby , Ratones , Replicación Viral
16.
Cell Host Microbe ; 22(5): 615-626.e8, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29056430

RESUMEN

Low pathogenic H7N9 influenza viruses have recently evolved to become highly pathogenic, raising concerns of a pandemic, particularly if these viruses acquire efficient human-to-human transmissibility. We compared a low pathogenic H7N9 virus with a highly pathogenic isolate, and two of its variants that represent neuraminidase inhibitor-sensitive and -resistant subpopulations detected within the isolate. The highly pathogenic H7N9 viruses replicated efficiently in mice, ferrets, and/or nonhuman primates, and were more pathogenic in mice and ferrets than the low pathogenic H7N9 virus, with the exception of the neuraminidase inhibitor-resistant virus, which showed mild-to-moderate attenuation. All viruses transmitted among ferrets via respiratory droplets, and the neuraminidase-sensitive variant killed several of the infected and exposed animals. Neuraminidase inhibitors showed limited effectiveness against these viruses in vivo, but the viruses were susceptible to a polymerase inhibitor. These results suggest that the highly pathogenic H7N9 virus has pandemic potential and should be closely monitored.


Asunto(s)
Hurones/virología , Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Animales , Antivirales/farmacología , Encéfalo/patología , Encéfalo/virología , Línea Celular , Pollos/virología , Conjuntiva/patología , Conjuntiva/virología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Humanos , Gripe Aviar/virología , Pulmón/patología , Pulmón/virología , Macaca/virología , Ratones , Neuraminidasa/efectos de los fármacos , Infecciones del Sistema Respiratorio/patología , Infecciones del Sistema Respiratorio/virología , Replicación Viral
17.
Vet Ital ; 43(1): 55-64, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-20411501

RESUMEN

The Animal Products Safety Division (APSD) of Japan was created in the Ministry of Agriculture, Forestry and Fisheries in October 2005 to strengthen the role of the Ministry in animal production food safety. The authors outline the background to the establishment of the APSD and its functions. The APSD is engaged in administration related to risk management during the production stage of terrestrial and aquatic animal products. The APSD endeavours to ensure that risk management measures are taken in accordance with the relevant laws, regulations and administrative notifications and that they are based on risk assessment and science. The APSD works in close collaboration with other national agencies, prefecture governments, foreign governments and international organisations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA