Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Small ; 20(26): e2311391, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38233208

RESUMEN

Guided by a superb dual-ions cosubstitution strategy, two novel, highly optically anisotropic hybrid bismuth halides are designed and synthesized. The first compound, Gu3Bi2NO3Cl8 (Gu = C(NH2)3), is developed using the 2D perovskite halide Cs3Bi2Cl9 as the maternal structure. This involved substituting all Cs+ cations with organic Gu+ and replacing some Cl- anions with [NO3]-. Further substitution of Cl- with additional [NO3]- resulted in the formation of nitrate-rich Gu2Bi(NO3)3Cl2 crystal, exhibiting a 3.4-fold increase in [NO3]- per unit volume. Both compounds have a structurally 0D nature, comprising bismuth-centered polyhedra formed by coordinated chlorides and monodentate/bidentate nitrate moieties, with Gu+ serving as a separator and linker. Notably, the presence of superb optically anisotropic dual-ions, i.e., planar Gu+ and [NO3]-, enables these crystals to possess sharply enhanced optical anisotropy, with birefringence values more than 1 order of magnitude higher than that of the initial crystal Cs3Bi2Cl9 (0.162/0.186vs 0.011 at 546 nm). The discovery and characterization of Gu3Bi2NO3Cl8 and Gu2Bi(NO3)3Cl2 crystals provide new insights into achieving expected modifications in optical properties through the utilization of a dual-ions cosubstitution strategy.

2.
Inorg Chem ; 63(5): 2793-2802, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38258810

RESUMEN

To introduce a design strategy for improving optical properties, two silver-amino alkylpyridine nitrate complexes, AgC6H8N3O3 and Ag2C14H20N6O6, were successfully synthesized using a recrystallization method. By employing polarizable π-conjugated [NO3-] ions, two types of pyridine ligands, and silver cations with a high affinity for pyridine, we obtained a one-dimensional chain structure with 4-aminomethylpyridine (AgC6H8N3O3) and a zero-dimensional molecular compound by introducing a relatively flexible aliphatic chain with 4-(2-aminoethyl)pyridine (Ag2C14H20N6O6). The compounds crystallize in the triclinic crystal system with the centrosymmetric P-1 space group, exhibiting a change in orientation between the π-conjugated system and the silver ion. Despite similar optical band gaps (3.69 eV for AgC6H8N3O3 and 3.73 eV for Ag2C14H20N6O6), AgC6H8N3O3 shows higher absorption in the 350-600 nm range. Electronic structure calculations support the ultraviolet absorption findings, suggesting that charge transfer with π-conjugated systems influences birefringence. Ag2C14H20N6O6 exhibits experimental birefringence (0.261@546.1 nm) surpassing that of AgC6H8N3O3 (0.212@546.1 nm), placing it among the highest recorded values within metal-pyridine incorporating nitrate complexes. The nonconventional orientation of π-conjugated [NO3-] ions contributes to this phenomenon, enhancing the action of free π-conjugated orbitals. This design strategy for micromodulating the alignment of the π-conjugated system promises to be an effective approach for enhancing optical properties, such as birefringence.

3.
Inorg Chem ; 63(7): 3578-3585, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38315816

RESUMEN

A new guanidinium-templated vanadate, [C(NH2)3]3VO4·2H2O, has been synthesized in a phase-pure form. It crystallizes in a noncentrosymmetric polar space group, Cc, and the crystal structure is built upon a framework of guanidinium, vanadate tetrahedra, and water molecules linked by hydrogen bonds. Notably, optical measurements reveal that the material exhibits an approximately 9.6-fold enhancement in second-harmonic generation efficiency compared to its phosphate analogue. The enhancement can be attributed to the increased geometrical distortion of the VO4 tetrahedra. Furthermore, we found that the coordination number of the central vanadium atom significantly affects the optical band gaps. Among various coordination numbers, the 4-coordinate VO4 tetrahedra are found to be more favorable for widening the optical band gap of materials compared to the 5- and 6-coordinate vanadium polyhedra, as demonstrated by this work.

4.
Inorg Chem ; 63(29): 13748-13754, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38961705

RESUMEN

Two new Bi(III)-based sulfates, namely, Bi(SO4)F·H2O (BSOF) and Bi(SO4)(NO3)·3H2O (BSNO), have been successfully synthesized through aliovalent replacement of partial [SO4]2- groups with F- and [NO3]- anions, respectively, in the parent structure of Bi2(SO4)3. Such chemical replacement altered the coordination environment of Bi3+ cations, facilitating changes in the structure and optical properties. Notably, the birefringence values of BSOF and BSNO are found to be 4.4 and 15.5 times that of parent Bi2(SO4)3. Further investigation into the structure-property relationship revealed that the birefringence enhancement in BSOF and BSNO is attributed to the improvement of the polarizability anisotropy of Bi3+-centered polyhedra in BSOF and BSNO compared to that of Bi2(SO4)3. In addition, the existence and optimized arrangement of planar [NO3]- groups are also indispensable for further birefringence improvement of the BSNO compound.

5.
Angew Chem Int Ed Engl ; : e202409336, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38923746

RESUMEN

Birefringent crystals have essential applications in optical communication areas. Low-dimensional structures with inherited structural anisotropy are potential systems for investigating birefringent materials with large birefringence. In this work, the zero-dimensional (0D) [(p-C5H5NO)2ZnCl2] (1) and [p-C5H6NO]2[ZnCl4] (2) were obtained by introducing the π-conjugated p-C5H5NO (4HP) into the three-dimensional (3D) ZnCl2. Remarkably, 1 exhibits a giant birefringence of 0.482@546 nm, which is the largest among Zn-based ultraviolet (UV) compounds and 160 times that of ZnCl2. According to structural and theoretical calculation analyses, the large optical polarizability, high spatial density, ideal distribution of the [(4HP)2ZnCl2]0 cluster, and the low dimension of 1 result in the dramatically increased birefringence compared to ZnCl2. This work will provide a valid route for accelerating the design and synthesis of compounds with excellent birefringence in low-dimensional systems.

6.
Chem Sci ; 15(26): 10193-10199, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38966371

RESUMEN

Coplanar groups with large anisotropic polarizability are suitable as birefringence-active groups for investigating compounds with significant birefringence. In this study, the organic coplanar raw reagent, o-C5H5NO (4HP), was selected as an individual complement. Utilizing the cocrystal engineering strategy, we successfully designed two cocrystals: [LiNO3·H2O·4HP]·4HP (Li-4HP2) and [Mg(NO3)2·6H2O]·(4HP)2 (Mg-4HP), and one by-product: LiNO3·H2O·4HP (Li-4HP), which were grown using a mild aqua-solution method. The synergy of the coplanar groups of NO3 - and 4HP in the structures resulted in unexpectedly large birefringence values of 0.376-0.522@546 nm. Furthermore, the compounds exhibit large bandgaps (4.08-4.51 eV), short UV cutoff edges (275-278 nm), and favorable growth habits, suggesting their potential as short-wave UV birefringent materials.

8.
Chem Sci ; 15(17): 6572-6576, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38699253

RESUMEN

The key properties of nonlinear optical (NLO) materials highly rely on the quality of functional chromophores (FCs) and their optimized interarrangement in the lattice. Despite the screening of various FCs, significant challenges persist in optimizing their arrangement within specific structures. Generally, FC alignment is achieved by designing negatively charged 2D layers or 3D frameworks, further regulated by templating cations. In this study, a novel 0D adduct NLO material, SbF3·glycine, is reported. Neutrally charged 0D [SbF3C2H5NO2] FCs, comprising [SbF3] pyramids and zwitterionic glycine, are well-aligned in the structure. The alignment is facilitated by the hydrogen bonding, reinforcing a 'head-to-tail' ligation of [SbF3C2H5NO2] FCs. Consequently, the title compound exhibits favorable NLO properties, including a large second-harmonic generation efficiency (3.6 × KDP) and suitable birefringence (cal. 0.057 @ 1064 nm). Additionally, its short absorption cut-off edge (231 nm) positions it as a promising short-wave ultraviolet NLO material. Importantly, the binary SbF3-amino acid system is expected to serve as a new resource for exploring ultraviolet NLO crystals, owing to the abundance of the amino acid family.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA