Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Biotechnol J ; 19(10): 1901-1920, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34182608

RESUMEN

Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens or parasites that spread in communities by direct contact with infected individuals or contaminated materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ˜17% of all human deaths and their management and control places an immense burden on healthcare systems worldwide. Traditional approaches for the prevention and control of infectious diseases include vaccination programmes, hygiene measures and drugs that suppress the pathogen, treat the disease symptoms or attenuate aggressive reactions of the host immune system. The provision of vaccines and biologic drugs such as antibodies is hampered by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, particularly in developing countries where infectious diseases are prevalent and poorly controlled. Molecular farming, which uses plants for protein expression, is a promising strategy to address the drawbacks of current manufacturing platforms. In this review article, we consider the potential of molecular farming to address healthcare demands for the most prevalent and important epidemic and pandemic diseases, focussing on recent outbreaks of high-mortality coronavirus infections and diseases that disproportionately affect the developing world.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Enfermedades Transmisibles/epidemiología , Humanos , Pandemias/prevención & control , SARS-CoV-2
2.
Planta Med ; 84(9-10): 743-748, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29518814

RESUMEN

In this study, three semisynthetic betulonic acid-based compounds, 20(29)-dihydrolup-2-en[2,3-d]isoxazol-28-oic acid, 1-betulonoylpyrrolidine, and lupa-2,20(29)-dieno[2,3-b]pyrazin-28-oic acid, were studied in biotransformation experiments using Nicotiana tabacum and Catharanthus roseus cell suspension cultures. Biotransformation was performed using cyclodextrin to aid dissolving poorly water-soluble substrates. Several new derivatives were found, consisting of oxidized and glycosylated (pentose- and hexose-conjugated) products.


Asunto(s)
Catharanthus/metabolismo , Nicotiana/metabolismo , Ácido Oleanólico/análogos & derivados , Biotransformación , Células Cultivadas , Ciclodextrinas , Glicosilación , Ácido Oleanólico/química , Ácido Oleanólico/metabolismo , Oxidación-Reducción , Espectrometría de Masas en Tándem
3.
Plant Cell Rep ; 36(10): 1615-1626, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28707113

RESUMEN

KEY MESSAGE: Tetraploidy improves overexpression of h6h and scopolamine production of H. muticus, while in H. senecionis, pmt overexpression and elicitation can be used as effective methods for increasing tropane alkaloids. The effects of metabolic engineering in a polyploid context were studied by overexpression of h6h in the tetraploid hairy root cultures of H. muticus. Flow cytometry analysis indicated genetic stability in the majority of the clones, while only a few clones showed genetic instability. Among all the diploid and tetraploid clones, the highest level of h6h transgene expression and scopolamine accumulation was interestingly observed in the tetraploid clones of H. muticus. Therefore, metabolic engineering of the tropane biosynthetic pathway in polyploids is suggested as a potential system for increasing the production of tropane alkaloids. Transgenic hairy root cultures of Hyoscyamus senecionis were also established. While overexpression of pmt in H. senecionis was correlated with a sharp increase in hyoscyamine production, the h6h-overexpressing clones were not able to accumulate higher levels of scopolamine than the leaves of intact plants. Applying methyl jasmonate was followed by a sharp increase in the expression of pmt and a drop in the expression of tropinone reductase II (trII) which consequently resulted in the higher biosynthesis of hyoscyamine and total alkaloids in H. senecionis.


Asunto(s)
Alcaloides/metabolismo , Hyoscyamus/genética , Ingeniería Metabólica/métodos , Raíces de Plantas/genética , Ploidias , Tropanos/metabolismo , Vías Biosintéticas/genética , Diploidia , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Hyoscyamus/clasificación , Hyoscyamus/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Escopolamina/metabolismo , Especificidad de la Especie , Tetraploidía , Técnicas de Cultivo de Tejidos
4.
Biotechnol Lett ; 39(6): 829-840, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28299544

RESUMEN

Rhazya stricta Decne. (Apocynaceae) is an important medicinal plant that is widely distributed in the Middle East and Indian sub-continent. It produces a large number of terpenoid indole alkaloids (TIAs) some of which possess important pharmacological properties. However, the yields of these compounds are very low. Establishment of a reliable, reproducible and efficient transformation method and induction of hairy roots system is a vital prerequisite for application of biotechnology in order to improve secondary metabolite yields. In the present review, recent biotechnological attempts and advances in TIAs production through transformed hairy root cultures in R. stricta are reviewed to draw the attention to its metabolic engineering potential.


Asunto(s)
Apocynaceae , Plantas Modificadas Genéticamente , Plantas Medicinales , Alcaloides de Triptamina Secologanina , Agrobacterium/genética , Apocynaceae/genética , Apocynaceae/metabolismo , Biotecnología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Alcaloides de Triptamina Secologanina/análisis , Alcaloides de Triptamina Secologanina/metabolismo , Técnicas de Cultivo de Tejidos , Transfección
5.
J Nat Prod ; 79(2): 362-8, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26849852

RESUMEN

Dehydroabietylamine (1) was used as a starting material to synthesize a small library of dehydroabietyl amides by simple and facile methods, and their activities against two disease-causing trypanosomatids, namely, Leishmania donovani and Trypanosoma cruzi, were assayed. The most potent compound, 10, an amide of dehydroabietylamine and acrylic acid, was found to be highly potent against these parasites, displaying an IC50 value of 0.37 µM against L. donovani axenic amastigotes and an outstanding selectivity index of 63. Moreover, compound 10 fully inhibited the growth of intracellular amastigotes in Leishmania donovani-infected human macrophages with a low IC50 value of 0.06 µM. This compound was also highly effective against T. cruzi amastigotes residing in L6 cells with an IC50 value of 0.6 µM and high selectivity index of 58, being 3.5 times more potent than the reference compound benznidazole. The potent activity of this compound and its relatively low cytotoxicity make it attractive for further development in pursuit of better drugs for patients suffering from leishmaniasis and Chagas disease.


Asunto(s)
Abietanos , Amidas/aislamiento & purificación , Amidas/farmacología , Leishmania donovani/efectos de los fármacos , Tripanocidas , Trypanosoma cruzi/efectos de los fármacos , Abietanos/química , Abietanos/aislamiento & purificación , Abietanos/farmacología , Amidas/química , Enfermedad de Chagas/tratamiento farmacológico , Humanos , Concentración 50 Inhibidora , Leishmaniasis/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Estructura Molecular , Nitroimidazoles/farmacología , Pruebas de Sensibilidad Parasitaria , Tripanocidas/química , Tripanocidas/aislamiento & purificación , Tripanocidas/farmacología
7.
Plant Cell Rep ; 34(11): 1939-52, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26245531

RESUMEN

KEY MESSAGE: Transgenic hairy roots of R. stricta were developed for investigation of alkaloid accumulations. The contents of five identified alkaloids, including serpentine as a new compound, increased compared to non-transformed roots. Rhazya stricta Decne. is a rich source of pharmacologically active terpenoid indole alkaloids (TIAs). In order to study TIA production and enable metabolic engineering, we established hairy root cultures of R. stricta by co-cultivating cotyledon, hypocotyl, leaf, and shoot explants with wild-type Agrobacterium rhizogenes strain LBA 9402 and A. rhizogenes carrying the pK2WG7-gusA binary vector. Hairy roots initiated from the leaf explants 2 to 8 weeks. Transformation was confirmed by polymerase chain reaction and in case of GUS clones with GUS staining assay. Transformation efficiency was 74 and 83% for wild-type and GUS hairy root clones, respectively. Alkaloid accumulation was monitored by HPLC, and identification was achieved by UPLC-MS analysis. The influence of light (16 h photoperiod versus total darkness) and media composition (modified Gamborg B5 medium versus Woody Plant Medium) on the production of TIAs were investigated. Compared to non-transformed roots, wild-type hairy roots accumulated significantly higher amounts of five alkaloids. GUS hairy roots contained higher amounts two of alkaloids compared to non-transformed roots. Light conditions had a marked effect on the accumulation of five alkaloids whereas the composition of media only affected the accumulation of two alkaloids. By successfully establishing R. stricta hairy root clones, the potential of transgenic hairy root systems in modulating TIA production was confirmed.


Asunto(s)
Catharanthus/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Agrobacterium/genética , Catharanthus/genética , Plantas Modificadas Genéticamente/genética , Transformación Genética/genética
8.
Phytochem Anal ; 26(5): 331-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26095837

RESUMEN

INTRODUCTION: Rhazya stricta Decne. (Apocynaceae) is a medicinal plant rich in terpenoid indole alkaloids (TIAs), some of which possess important pharmacological properties. The study material including transgenic hairy root cultures have been developed and their potential for alkaloid production are being investigated. OBJECTIVE: In this study, a comprehensive GC-MS method for qualitative and quantitative analysis of alkaloids from Rhazya hairy roots was developed. METHODS: The composition of alkaloids was determined by using GC-MS. In quantification, the ratio between alkaloid and internal standard was based on extracted ion from total ion current (TIC) analyses. RESULTS: The developed method was validated. An acceptable precision with RSD ≤ 8% over a linear range of 1 to 100 µg/mL was achieved. The accuracy of the method was within 94-107%. Analysis of hairy root extracts indicated the occurrence of a total of 20 TIAs. Six of them, pleiocarpamine, fluorocarpamine, vincamine, ajmalicine and two yohimbine isomers are reported here for the first time in Rhazya. Trimethylsilyl (TMS) derivatisation of the extracts resulted in the separation of two isomers for yohimbine and also for vallesiachotamine. Clearly improved chromatographic profiles of TMS-derivatives were observed for vincanine and for minor compounds vincamine and rhazine. CONCLUSION: The results show that the present GC-MS method is reliable and well applicable for studying the variation of indole alkaloids in Rhazya samples.


Asunto(s)
Apocynaceae/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Raíces de Plantas/química , Alcaloides de Triptamina Secologanina/análisis , Alcaloides/análisis , Alcaloides/química , Alcaloides/aislamiento & purificación , Apocynaceae/genética , Isomerismo , Estructura Molecular , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Reproducibilidad de los Resultados , Alcaloides de Triptamina Secologanina/química , Alcaloides de Triptamina Secologanina/aislamiento & purificación , Técnicas de Cultivo de Tejidos/métodos , Compuestos de Trimetilsililo/análisis , Compuestos de Trimetilsililo/química , Compuestos de Trimetilsililo/aislamiento & purificación , Vincamina/análisis , Vincamina/química , Vincamina/aislamiento & purificación , Yohimbina/análisis , Yohimbina/química , Yohimbina/aislamiento & purificación
9.
Molecules ; 20(12): 22621-34, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26694342

RESUMEN

Rhazya stricta Decne. (Apocynaceae) contains a large number of terpenoid indole alkaloids (TIAs). This study focused on the composition of alkaloids obtained from transformed hairy root cultures of R. stricta employing ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). In the UPLC-MS analyses, a total of 20 TIAs were identified from crude extracts. Eburenine and vincanine were the main alkaloids followed by polar glucoalkaloids, strictosidine lactam and strictosidine. Secodine-type alkaloids, tetrahydrosecodinol, tetrahydro- and dihydrosecodine were detected too. The occurrence of tetrahydrosecodinol was confirmed for the first time for R. stricta. Furthermore, two isomers of yohimbine, serpentine and vallesiachotamine were identified. The study shows that a characteristic pattern of biosynthetically related TIAs can be monitored in Rhazya hairy root crude extract by this chromatographic method.


Asunto(s)
Alcaloides/aislamiento & purificación , Apocynaceae/química , Indoles/aislamiento & purificación , Raíces de Plantas/química , Alcaloides/química , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Indoles/química , Espectrometría de Masa por Ionización de Electrospray
10.
Biotechnol Bioeng ; 111(2): 336-46, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24030771

RESUMEN

Recombinant pharmaceutical proteins expressed in hairy root cultures can be secreted into the medium to improve product homogeneity and to facilitate purification, although this may result in significant degradation if the protein is inherently unstable or particularly susceptible to proteases. To address these challenges, we used a design of experiments approach to develop an optimized induction protocol for the cultivation of tobacco hairy roots secreting the full-size monoclonal antibody M12. The antibody yield was enhanced 30-fold by the addition of 14 g/L KNO3 , 19 mg/L 1-naphthaleneacetic acid and 1.5 g/L of the stabilizing agent polyvinylpyrrolidone. Analysis of hairy root cross sections revealed that the optimized medium induced lateral root formation and morphological changes in the inner cortex and pericycle cells, indicating that the improved productivity was at least partially based on the enhanced efficiency of antibody secretion. We found that 57% of the antibody was secreted, yielding 5.9 mg of product per liter of induction medium. Both the secreted and intracellular forms of the antibody could be isolated by protein A affinity chromatography and their functionality was confirmed using vitronectin-binding assays. Glycan analysis revealed three major plant complex-type glycans on both forms of the antibody, although the secreted form was more homogeneous due to the predominance of a specific glycoform. Tobacco hairy root cultures therefore offer a practical solution for the production of homogeneous pharmaceutical antibodies in containment.


Asunto(s)
Anticuerpos/metabolismo , Agricultura Molecular/métodos , Nicotiana/metabolismo , Raíces de Plantas/metabolismo , Tecnología Farmacéutica/métodos , Anticuerpos/química , Anticuerpos/genética , Anticuerpos/aislamiento & purificación , Medios de Cultivo/química , Glicosilación , Raíces de Plantas/genética , Polisacáridos/análisis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Nicotiana/genética
11.
Proc Natl Acad Sci U S A ; 108(14): 5891-6, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21436041

RESUMEN

The phytohormones jasmonates (JAs) constitute an important class of elicitors for many plant secondary metabolic pathways. However, JAs do not act independently but operate in complex networks with crosstalk to several other phytohormonal signaling pathways. Here, crosstalk was detected between the JA and abscisic acid (ABA) signaling pathways in the regulation of tobacco (Nicotiana tabacum) alkaloid biosynthesis. A tobacco gene from the PYR/PYL/RCAR family, NtPYL4, the expression of which is regulated by JAs, was found to encode a functional ABA receptor. NtPYL4 inhibited the type-2C protein phosphatases known to be key negative regulators of ABA signaling in an ABA-dependent manner. Overexpression of NtPYL4 in tobacco hairy roots caused a reprogramming of the cellular metabolism that resulted in a decreased alkaloid accumulation and conferred ABA sensitivity to the production of alkaloids. In contrast, the alkaloid biosynthetic pathway was not responsive to ABA in control tobacco roots. Functional analysis of the Arabidopsis (Arabidopsis thaliana) homologs of NtPYL4, PYL4 and PYL5, indicated that also in Arabidopsis altered PYL expression affected the JA response, both in terms of biomass and anthocyanin production. These findings define a connection between a component of the core ABA signaling pathway and the JA responses and contribute to the understanding of the role of JAs in balancing tradeoffs between growth and defense.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Nicotiana/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología , Alcaloides/biosíntesis , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Perfilación de la Expresión Génica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Plant Cell Physiol ; 54(5): 673-85, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23493402

RESUMEN

The medicinal plant Madagascar periwinkle (Catharanthus roseus) synthesizes numerous terpenoid indole alkaloids (TIAs), such as the anticancer drugs vinblastine and vincristine. The TIA pathway operates in a complex metabolic network that steers plant growth and survival. Pathway databases and metabolic networks reconstructed from 'omics' sequence data can help to discover missing enzymes, study metabolic pathway evolution and, ultimately, engineer metabolic pathways. To date, such databases have mainly been built for model plant species with sequenced genomes. Although genome sequence data are not available for most medicinal plant species, next-generation sequencing is now extensively employed to create comprehensive medicinal plant transcriptome sequence resources. Here we report on the construction of CathaCyc, a detailed metabolic pathway database, from C. roseus RNA-Seq data sets. CathaCyc (version 1.0) contains 390 pathways with 1,347 assigned enzymes and spans primary and secondary metabolism. Curation of the pathways linked with the synthesis of TIAs and triterpenoids, their primary metabolic precursors, and their elicitors, the jasmonate hormones, demonstrated that RNA-Seq resources are suitable for the construction of pathway databases. CathaCyc is accessible online (http://www.cathacyc.org) and offers a range of tools for the visualization and analysis of metabolic networks and 'omics' data. Overlay with expression data from publicly available RNA-Seq resources demonstrated that two well-characterized C. roseus terpenoid pathways, those of TIAs and triterpenoids, are subject to distinct regulation by both developmental and environmental cues. We anticipate that databases such as CathaCyc will become key to the study and exploitation of the metabolism of medicinal plants.


Asunto(s)
Catharanthus/metabolismo , Bases de Datos como Asunto , Redes y Vías Metabólicas , ARN de Planta/metabolismo , Análisis de Secuencia de ARN , Catharanthus/genética , Análisis por Conglomerados , Ciclopentanos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas/genética , Anotación de Secuencia Molecular , Oxilipinas/metabolismo , ARN de Planta/genética , Alcaloides de Triptamina Secologanina/química , Alcaloides de Triptamina Secologanina/metabolismo , Transcriptoma/genética
13.
J Agric Food Chem ; 71(36): 13391-13400, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37656963

RESUMEN

Raspberry ketone has generated interest in recent years both as a flavor agent and as a health promoting supplement. Raspberry ketone can be synthesized chemically, but the value of a natural nonsynthetic product is among the most valuable flavor compounds on the market. Coumaroyl-coenzyme A (CoA) is the direct precursor for raspberry ketone but also an essential precursor for flavonoid and lignin biosynthesis in plants and therefore highly regulated. The synthetic fusion of 4-coumaric acid ligase (4CL) and benzalacetone synthase (BAS) enables the channeling of coumaroyl-CoA from the ligase to the synthase, proving to be a powerful tool in the production of raspberry ketone in both N. benthamiana and S. cerevisiae. To the best of our knowledge, the key pathway genes for raspberry ketone formation are transiently expressed in N. benthamiana for the first time in this study, producing over 30 µg/g of the compound. Our raspberry ketone producing yeast strains yielded up to 60 mg/L, which is the highest ever reported in yeast.


Asunto(s)
Productos Biológicos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Nicotiana/genética , Metabolismo Secundario
14.
Front Cell Infect Microbiol ; 13: 1176755, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424779

RESUMEN

Introduction: Surgical site infection remains a devastating and feared complication of surgery caused mainly by Staphylococcus aureus (S. aureus). More specifically, methicillin-resistant S. aureus (MRSA) infection poses a serious threat to global health. Therefore, developing new antibacterial agents to address drug resistance are urgently needed. Compounds derived from natural berries have shown a strong antimicrobial potential. Methods: This study aimed to evaluate the effect of various extracts from two arctic berries, cloudberry (Rubus chamaemorus) and raspberry (Rubus idaeus), on the development of an MRSA biofilm and as treatment on a mature MRSA biofilm. Furthermore, we evaluated the ability of two cloudberry seed-coat fractions, hydrothermal extract and ethanol extract, and the wet-milled hydrothermal extract of a raspberry press cake to inhibit and treat biofilm development in a wound-like medium. To do so, we used a model strain and two clinical strains isolated from infected patients. Results: All berry extracts prevented biofilm development of the three MRSA strains, except the raspberry press cake hydrothermal extract, which produced a diminished anti-staphylococcal effect. Discussion: The studied arctic berry extracts can be used as a treatment for a mature MRSA biofilm, however some limitations in their use exist.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Frutas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Estafilocócicas/microbiología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Biopelículas , Crecimiento y Desarrollo , Pruebas de Sensibilidad Microbiana
15.
Sci Rep ; 13(1): 8198, 2023 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-37211560

RESUMEN

Veratrum (Melanthiaceae; Liliales) is a genus of perennial herbs known for the production of unique bioactive steroidal alkaloids. However, the biosynthesis of these compounds is incompletely understood because many of the downstream enzymatic steps have yet to be resolved. RNA-Seq is a powerful method that can be used to identify candidate genes involved in metabolic pathways by comparing the transcriptomes of metabolically active tissues to controls lacking the pathway of interest. The root and leaf transcriptomes of wild Veratrum maackii and Veratrum nigrum plants were sequenced and 437,820 clean reads were assembled into 203,912 unigenes, 47.67% of which were annotated. We identified 235 differentially expressed unigenes potentially involved in the synthesis of steroidal alkaloids. Twenty unigenes, including new candidate cytochrome P450 monooxygenases and transcription factors, were selected for validation by quantitative real-time PCR. Most candidate genes were expressed at higher levels in roots than leaves but showed a consistent profile across both species. Among the 20 unigenes putatively involved in the synthesis of steroidal alkaloids, 14 were already known. We identified three new CYP450 candidates (CYP76A2, CYP76B6 and CYP76AH1) and three new transcription factor candidates (ERF1A, bHLH13 and bHLH66). We propose that ERF1A, CYP90G1-1 and CYP76AH1 are specifically involved in the key steps of steroidal alkaloid biosynthesis in V. maackii roots. Our data represent the first cross-species analysis of steroidal alkaloid biosynthesis in the genus Veratrum and indicate that the metabolic properties of V. maackii and V. nigrum are broadly conserved despite their distinct alkaloid profiles.


Asunto(s)
Alcaloides , Veratrum , Veratrum/genética , Transcriptoma , Alcaloides/genética , Perfilación de la Expresión Génica , Alcaloides de Veratrum , Esteroides , Sistema Enzimático del Citocromo P-450/genética
16.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-37259292

RESUMEN

Industrial chicory is an important crop for its high dietary fibre content. Besides inulin, chicory taproots contain interesting secondary metabolite compounds, which possess bioactive properties. Hairy roots are differentiated plant cell cultures that have shown to be feasible biotechnological hosts for the production of several plant-derived molecules. In this study, hairy roots of industrial chicory cultivars were established, and their potential as a source of antimicrobial ingredients was assessed. It was shown that hot water extracts of hairy roots possessed antimicrobial activity against relevant human microbes, whereas corresponding chicory taproots did not show activity. Remarkably, a significant antimicrobial activity of hot water extracts of chicory hairy roots towards methicillin-resistant Staphylococcus aureus was observed, indicating a high potential of hairy roots as a host for production of antimicrobial agents.

17.
Proteomics ; 12(23-24): 3536-47, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23044725

RESUMEN

Madagascar periwinkle (Catharanthus roseus) is the major source of terpenoid indole alkaloids, such as vinblastine or vincristine, used as natural drugs against various cancers. In this study, we have extensively analyzed the proteome of cultured C. roseus cells. Comparison of the proteomes of two independent cell lines with different terpenoid indole alkaloid metabolism by 2D-DIGE revealed 358 proteins that differed quantitatively by at least a twofold average ratio. Of these, 172 were identified by MS; most corresponded to housekeeping proteins. Less abundant proteins were identified by LC separation of tryptic peptides of proteins from one of the lines. We identified 1663 proteins, most of which are housekeeping proteins or involved in primary metabolism. However, 63 enzymes potentially involved in secondary metabolism were also identified, of which 22 are involved in terpenoid indole alkaloid biosynthesis and 16 are predicted transporters putatively involved in secondary metabolite transport. About 30% of the proteins identified have an unclear or unknown function, indicating important gaps in knowledge of plant metabolism. This study is an important step toward elucidating the proteome of C. roseus, which is critical for a better understanding of how this plant synthesizes terpenoid indole alkaloids.


Asunto(s)
Catharanthus/metabolismo , Proteínas de Plantas/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Catharanthus/enzimología , Línea Celular , Monoterpenos/metabolismo , Proteoma/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Electroforesis Bidimensional Diferencial en Gel
18.
Proc Natl Acad Sci U S A ; 106(7): 2447-52, 2009 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-19168636

RESUMEN

Alkaloids play a key role in plant defense mechanisms against pathogens and herbivores, but the plants themselves need to cope with their toxicity as well. The major alkaloid of the Nicotiana species, nicotine, is translocated via xylem transport from the root tissues where it is biosynthesized to the accumulation sites, the vacuoles of leaves. To unravel the molecular mechanisms behind this membrane transport, we characterized one transporter, the tobacco (Nicotiana tabacum) jasmonate-inducible alkaloid transporter 1 (Nt-JAT1), whose expression was coregulated with that of nicotine biosynthetic genes in methyl jasmonate-treated tobacco cells. Nt-JAT1, belonging to the family of multidrug and toxic compound extrusion transporters, was expressed in roots, stems, and leaves, and localized in the tonoplast of leaf cells. When produced in yeast cells, Nt-JAT1 occurred mainly in the plasma membrane and showed nicotine efflux activity. Biochemical analysis with proteoliposomes reconstituted with purified Nt-JAT1 and bacterial F(0)F(1)-ATPase revealed that Nt-JAT1 functioned as a proton antiporter and recognized endogenous tobacco alkaloids, such as nicotine and anabasine, and other alkaloids, such as hyoscyamine and berberine, but not flavonoids. These findings strongly suggest that Nt-JAT1 plays an important role in the nicotine translocation by acting as a secondary transporter responsible for unloading of alkaloids in the aerial parts and deposition in the vacuoles.


Asunto(s)
Antiportadores/metabolismo , Nicotiana/metabolismo , Nicotina/metabolismo , Proteínas de Plantas/fisiología , Antiportadores/química , Transporte Biológico , Clonación Molecular , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ligamiento Genético , Modelos Biológicos , Datos de Secuencia Molecular , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteolípidos/química , Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ADN
19.
Curr Opin Biotechnol ; 75: 102686, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35093677

RESUMEN

More food needs to be produced for the growing human population, but the possibilities of expanding the area of arable land are limited. Cellular Agriculture is an emerging field of biotechnology, aimed at finding alternatives to agricultural production of various commodities. As a part of Cellular Agriculture, the use of microbes and microalgae as food and feed with high protein content, so-called single cell protein (SCP), is gaining renewed scientific and commercial interest. In this review, we give an introduction to SCP production by heterotrophic microbial species, phototrophs, methanotrophs and autotrophic hydrogen oxidizers, as well as highlight some challenges and the latest developments in the growing SCP industry.


Asunto(s)
Agricultura , Microalgas , Biotecnología , Proteínas en la Dieta , Humanos , Microalgas/metabolismo , Proteínas/metabolismo
20.
AMB Express ; 12(1): 152, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36472772

RESUMEN

Chicory (Cichorium intybus L.) is an important industrial crop that produces large quantities of the dietary fiber inulin in its roots. Following inulin extraction, the bagasse is typically used as animal feed, but it contains numerous bioactive secondary metabolites with potential applications in healthcare and cosmetic products. Here we assessed the antimicrobial properties of chicory biomass pre-treated with various enzymes alone and in combination to release the bioactive compounds and increase their bioavailability. We found that pre-treatment significantly increased the antimicrobial activity of this industrial by-product, yielding an extract that inhibited typical skin pathogens in a cosmetic formula challenge test. We also evaluated the valorization of chicory biomass as a bioactive cosmetic ingredient. Economic feasibility was estimated by combining our experimental results with a conceptual techno-economic analysis. Our results suggest that chicory biomass can be utilized for the sustainable production of efficacious cosmetic ingredients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA