Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Biodivers ; : e202400281, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687533

RESUMEN

Glucose, the predominant carbohydrate in the human body, initiates nonenzymatic reactions in hyperglycemia, potentially leading to adverse biochemical interactions. This study investigates the interaction between glucose and Bovine Serum Albumin (BSA), along with the protective effects of Spirulina platensis PCC 7345 aqueous extract. Phycobiliproteins (phycocyanin, phycoerythrin, and allophycocyanin) in the extract were quantified using spectrophotometry. The extract's anti-glycation potential was assessed by analyzing its effects on albumin glycation, fluorescent advanced glycation end products (AGEs), thiol group oxidation, and ß-amyloid structure generation. Additionally, its antidiabetic potential was evaluated by measuring α-amylase and α-glucosidase enzyme inhibition. Results indicate that the Spirulina extract significantly mitigated ketoamine levels, fluorescence, and protein-carbonyl production induced by glucose, demonstrating a 67.81 % suppression of AGE formation after 28 days. Moreover, it effectively inhibited amyloid formation in BSA cross-linkages. These findings suggest the potential of S. platensis as an anti-glycation and antidiabetic agent, supporting its consideration for dietary inclusion to manage diabetes and associated complications.

2.
J Mol Recognit ; 36(6): e3009, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36841950

RESUMEN

Several proteins and peptides tend to form an amyloid fibril, causing a range of unrelated diseases, from neurodegenerative to certain types of cancer. In the native state, these proteins are folded and soluble. However, these proteins acquired ß-sheet amyloid fibril due to unfolding and aggregation. The conversion mechanism from well-folded soluble into amorphous or amyloid fibril is not well understood yet. Here, we induced unfolding and aggregation of hen egg-white lysozyme (HEWL) by reducing agent dithiothreitol and applied mechanical sheering force by constant shaking (1000 rpm) on the thermostat for 7 days. Our turbidity results showed that reduced HEWL rapidly formed aggregates, and a plateau was attained in nearly 5 h of incubation in both shaking and non-shaking conditions. The turbidity was lower in the shaking condition than in the non-shaking condition. The thioflavin T binding and transmission electron micrographs showed that reduced HEWL formed amorphous aggregates in both conditions. Far-UV circular dichroism results showed that reduced HEWL lost nearly all alpha-helical structure, and ß-sheet secondary structure was not formed in both conditions. All the spectroscopic and microscopic results showed that reduced HEWL formed amorphous aggregates under both conditions.


Asunto(s)
Amiloide , Muramidasa , Animales , Temperatura , Muramidasa/química , Amiloide/química , Dicroismo Circular , Concentración de Iones de Hidrógeno , Pollos/metabolismo
3.
J Insect Sci ; 23(6)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38092368

RESUMEN

Phenylacetaldehyde (PAH), an aromatic odorant, exists in varied fruits including overripe bananas and prickly pear cactus, the 2 major host fruits of Drosophila melanogaster. It acts as a potent ligand for the Ionotropic receptor 84a (IR84a) and the Odorant receptor 67a (OR67a), serving as an important food and courtship cue for adult fruit flies. Drosophila melanogaster larvae respond robustly to diverse feeding odorants, such as ethyl acetate (EA), an aliphatic ester. Since the chemical identity and concentration of an odorant are vital neural information handled by the olfactory system, we studied how larvae respond to PAH, an aromatic food odorant with aphrodisiac properties for adult flies. Our findings revealed that PAH attracted larvae significantly in a dose-dependent manner. Larvae could also be trained with PAH associated to appetitive and aversive reinforcers. Thus, like EA, PAH might serve as an important odorant cue for larvae, aiding in food tracking and survival in the wild. Since IR84a/IR8a complex primarily governs PAH response in adult flies, we examined expression of Ir84a and Ir8a in early third-instar larvae. Our experiments showed the presence of Ir8a, a novel finding. However, contrary to adult flies, PAH-responsive Ir84a was not found. Our behavioral experiments with Ir8a1 mutant larvae exhibited normal chemotaxis to PAH, whereas Orco1 mutant showed markedly reduced chemotaxis, indicating an OR-mediated neural circuitry for sensing of PAH in larvae. The results obtained through this study are significantly important as information on how larvae perceive and process PAH odorant at the neuronal level is lacking.


Asunto(s)
Drosophila melanogaster , Receptores Odorantes , Animales , Larva/fisiología , Olfato , Drosophila , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Odorantes , Frutas
4.
Curr Issues Mol Biol ; 44(12): 6015-6027, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36547071

RESUMEN

Obesity has become a serious health problem in the world, with increased morbidity, mortality, and financial burden on patients and health-care providers. The skeletal muscle is the most extensive tissue, severely affected by a sedentary lifestyle, which leads to obesity and type 2 diabetes. Obesity disrupts insulin signaling in the skeletal muscle, resulting in decreased glucose disposal, a condition known as insulin resistance. Although there is a large body of evidence on obesity-induced insulin resistance in various skeletal muscles, the molecular mechanism of insulin resistance due to a disruption in insulin receptor signaling, specifically in the gastrocnemius skeletal muscle of obese Zucker rats (OZRs), is not fully understood. This study subjected OZRs to a glucose tolerance test (GTT) to analyze insulin sensitivity. In addition, immunoprecipitation and immunoblotting techniques were used to determine the expression and tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and insulin receptor-ß (IRß), and the activation of serine-632-IRS-1 phosphorylation in the gastrocnemius muscle of Zucker rats. The results show that the GTT in the OZRs was impaired. There was a significant decrease in IRS-1 levels, but no change was observed in IRß in the gastrocnemius muscle of OZRs, compared to Zucker leans. Obese rats had a higher ratio of tyrosine phosphorylation of IRS-1 and IRß than lean rats. In obese rats, however, insulin was unable to induce tyrosine phosphorylation. Moreover, insulin increased the phosphorylation of serine 632-IRS-1 in the gastrocnemius muscle of lean rats. However, obese rats had a low basal level of serine-632-IRS-1 and insulin only mildly increased serine phosphorylation in obese rats, compared to those without insulin. Thus, we addressed the altered steps of the insulin receptor signal transduction in the gastrocnemius muscle of OZRs. These findings may contribute to a better understanding of human obesity and type 2 diabetes.

5.
Medicina (Kaunas) ; 58(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36557018

RESUMEN

Background and Objectives: Glycation and oxidative stress are the major contributing factors responsible for diabetes and its secondary complications. Aminoguanidine, a hydrazine derivative, is the only approved drug that reduces glycation with its known side effects. As a result, research into medicinal plants with antioxidant and antiglycation properties is beneficial in treating diabetes and its consequences. This investigation aimed to examine the efficacy of the aqueous extract of Nigella sativa seeds against the D-ribose-induced glycation system. Materials and Methods: The suppression of α-amylase and α-glucosidase enzymes were used to assess the antidiabetic capacity. UV-Visible, fluorescence, and FTIR spectroscopy were used to characterize the Nigella sativa seed extract and its efficacy in preventing glycation. The inhibition of albumin glycation, fluorescent advanced glycation end products (AGEs) formation, thiol oxidation, and amyloid formation were used to evaluate the extracts' antiglycation activity. In addition, the extent of glycoxidative DNA damage was analyzed using agarose gel electrophoresis. Results: The IC50 for the extract in the α-amylase and α-glucosidase enzyme inhibition assays were approximately 1.39 ± 0.016 and 1.01 ± 0.022 mg/mL, respectively. Throughout the investigation, it was found that the aqueous extract of Nigella sativa seeds (NSAE) inhibited the level of ketoamine, exerted a considerable drop in fluorescence intensity, and reduced carbonyl production and thiol modification when added to the D-ribose-induced glycation system. In addition, a reduction in the BSA-cross amyloid formation was seen in the Congo red, thioflavin T assay, and electrophoretic techniques. NSAE also exhibited a strong capability for DNA damage protection. Conclusion: It can be concluded that Nigella sativa could be used as a natural antidiabetic, antiglycation treatment and a cost-effective and environmentally friendly source of powerful bioactive chemicals.


Asunto(s)
Nigella sativa , Extractos Vegetales , alfa-Amilasas , alfa-Glucosidasas , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Reacción de Maillard , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Ribosa , Semillas , Compuestos de Sulfhidrilo
6.
Mol Biol Rep ; 46(4): 4323-4332, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31250359

RESUMEN

From the literature review, there seem to be no studies conducted on infection caused by Helicobacter pylori in patients with gastric MALT lymphoma in the KSA region. The present research is an attempt to understand the prevalence of patients infected with H. pylori in the selected region and the role of allelic imbalance of chromosome 3p regions to understand the clinical manifestations and features associated with MALT lymphomagenesis. The researcher analyzed the frequency of infection in patients from the region of Saudi Arabia by examining the data collected from hospitals and biopsy tissue samples as per the recommended protocol. The endoscopic diagnosis was performed to collect biopsy samples. Histology and AP-PCR DNA fingerprinting analyses were performed from the endoscopic gastric mucosal biopsies collected from patients with associated gastric MALT lymphoma. The existence of H. pylori was examined based on the results of gastric mucosal biopsies stained with hematoxylin-eosin (H&E) and Steiner's silver stains. MALT, MALT lymphoma tissue samples and H. pylori-positive chronic gastritis were examined for LOH at chromosome 3p24 using standard procedures and techniques. The findings of the paper revealed the H. pylori was found to be positive in 17% of the cases significantly high among the age group of 31-50 years. Patients with MALT, MALT lymphoma, and H. pylori-associated gastritis presented features such as lymphocyte accumulation, vacuolation, Peyer's patch appearance, and lymphatic follicles. H. pylori were found to appear as a dense colored accumulated mass in the gastric epithelial layer. The findings from AP-PCR generated DNA fingerprints revealed intense band including two prominent bands in MALT lymphoma. Among other loci, 3p24 was the only one locus that showed high percentages of LOH as reported earlier in all cancer-related cases. The findings of this research paper empower the fact that allelic imbalances play a vital role in the development of MALT lymphoma. However, future researches should be conducted to identify the chromosome regions of the AP-PCR generated DNA fingerprints of human gastric MALT lymphoma in order to confirm this proposition.


Asunto(s)
Infecciones por Helicobacter/epidemiología , Helicobacter pylori/genética , Linfoma de Células B de la Zona Marginal/microbiología , Adulto , Cromosomas/genética , Cromosomas Humanos Par 3/genética , Femenino , Mucosa Gástrica , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/genética , Helicobacter pylori/patogenicidad , Humanos , Pérdida de Heterocigocidad/genética , Masculino , Persona de Mediana Edad , Mutación , Reacción en Cadena de la Polimerasa , Prevalencia , Pronóstico , Arabia Saudita/epidemiología , Estómago , Gastropatías/genética , Gastropatías/microbiología
7.
Biochem Biophys Res Commun ; 444(2): 264-9, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24462861

RESUMEN

Hyperglycemia and impaired insulin signaling are considered as major factors in the retinal pathology in diabetic retinopathy (DR). Numerous reports support that these two factors damage retinal glial as well as neuronal cells early in diabetes. However, it is not known whether diabetic induced hyperglycemia causes a depression to the insulin signaling. In this study we utilized a well characterized cultured Muller cells (TR-MUL) where we found a high expression of insulin receptor molecules. TR-MUL Cells were treated with high glucose, glutamate and hydrogen peroxide, and activated with insulin. Following treatments, cell lysates were analyzed by immunoblotting experiments for insulin receptor (IRß) and insulin receptor substrate (IRS1). In addition, cell lysates were immunoprecipitated using antibodies against insulin receptor proteins to analyze tyrosine phosphorylation and serine phosphorylation of insulin receptor proteins. Results indicate that hyperglycemia did not affect the expression of insulin receptor proteins in cultured TR-MUL cells. Although, hyperglycemia seems to inhibit the interaction between IRS1 and IRß. Hydrogen peroxide increased the tyrosine phosphorylation of insulin receptor proteins but excess glutamate could not affect the insulin receptor proteins indicating that glutamate may not cause oxidative stress in TR-MUL cells. Hyperglycemia lowered serine phosphorylation of IRS(ser632) and IRS(ser1101) however, IRS(ser307) was not affected. Thus, hyperglycemia may not affect insulin signaling through tyrosine phosphorylation of insulin receptor proteins but may inhibit the interactions between insulin receptor proteins. Hyperglycemia induced phosphorylation of various serine residues of IRS1 and their influence on insulin signaling needs further investigation in TR-MUL cells.


Asunto(s)
Glucosa/farmacología , Neuroglía/efectos de los fármacos , Receptor de Insulina/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Ácido Glutámico/farmacología , Peróxido de Hidrógeno/farmacología , Hipoglucemiantes/farmacología , Immunoblotting , Insulina/farmacología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Oxidantes/farmacología , Fosforilación/efectos de los fármacos , Unión Proteica , Ratas , Retina/citología , Tirosina/metabolismo
8.
Curr Neuropharmacol ; 12(4): 380-6, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25342945

RESUMEN

Diabetic retinopathy (DR) is one of the major complications of diabetes causing vision loss and blindness worldwide. DR is widely recognized as a neurodegenerative disease as evidenced from early changes at cellular and molecular levels in the neuronal component of the diabetic retina, which is further supported by various retinal functional tests indicating functional deficits in the retina soon after diabetes progression. Diabetes alters the level of a number of neurodegenerative metabolites, which increases influx through several metabolic pathways which in turn induce an increase in oxidative stress and a decrease in neurotrophic factors, thereby damage retinal neurons. Loss of neurons may implicate in vascular pathology, a clinical signs of DR observed at later stages of the disease. Here, we discuss diabetes-induced potential metabolites known to be detrimental to neuronal damage and their mechanism of action. In addition, we highlight important neurotrophic factors, whose level have been found to be dysregulated in diabetic retina and may damage neurons. Furthermore, we discuss potential drugs and strategies based on targeting diabetes-induced metabolites, metabolic pathways, oxidative stress, and neurotrophins to protect retinal neurons, which may ameliorate vision loss and vascular damage in DR.

9.
Endocr Res ; 39(2): 61-5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24067131

RESUMEN

Recently, American Diabetic Association has recommended glycated hemoglobin (HbA1c ≥6.5%) as an alternate to fasting plasma glucose (FPG ≥7.0 mmol/L) for diagnosis of diabetes. However, studies from different groups showed inconsistent results with the use of HbA1c criteria. We examined the validity of HbA1c cut-point of 6.5% for diagnosis of diabetes. A total of 12 785 male diabetic patients (FGP ≥7.0 mmol/L), aged 56.27 ± 13.32 years were included. The average values of FPG and HbA1c of all the 12 785 patients were 10.127 ± 0.026 mmol/L and 8.729 ± 0.013%, respectively. Sub-grouping of patients into different age categories showed significantly high levels of FPG (10.934 ± 0.123 mmol/L) in the youngest group (age, ≥20-35 years) as compared to FPG (ranged from 10.021 ± 0.052 to 10.190 ± 0.050 mmol/L) in patients with other age categories. The level of HbA1c was highest in the youngest group (8.809 ± 0.056%) and lowest in the oldest group (8.653 ± 0.082%). There was a significant correlation between FPG and HbA1c (R = 0.571, p < 0.001). There were 484 patients below the diagnostic threshold (HbA1c <6.5%), resulting in 3.78% false negative predictions. Majority of the false negative patients were in the age group of 40-75 years and had borderline FPG (7.0-8.0 mmol/L) and HbA1c (6.0-6.5%). These findings suggest that Saudi individuals with HbA1c between 6.0% and 6.5% may be considered as "probable diabetic" and their status should be verified by combined FPG and HbA1c criteria.


Asunto(s)
Química Clínica/normas , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Hemoglobina Glucada/metabolismo , Hiperglucemia/sangre , Hiperglucemia/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Glucemia/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Valores de Referencia , Reproducibilidad de los Resultados , Estudios Retrospectivos , Arabia Saudita , Adulto Joven
10.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38543134

RESUMEN

Investigations into cholinesterase inhibition have received attention from researchers in recent years for the treatment of Alzheimer's disease. Cholinesterase enzymes, namely, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), hold pivotal significance in Alzheimer's disease (AD) treatment. In this study, we utilized the ethanolic extract of Astragalus crenatus followed by liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to separate and identify at least 21 compounds in the extract. Rosmarinic acid exhibited the highest concentration (96.675 ± 1.3 mg/g extract), succeeded by hesperidin (79.613 ± 1.2 mg/g extract), hesperetin (75.102 ± 1.4 mg/g extract), rutin (68.156 ± 1.6 mg/g extract), chlorogenic acid (67.645 ± 1.5 mg/g extract), fisetin (66.647 ± 2.3 mg/g extract), and hyperoside (63.173 ± 1.5 mg/g extract). A. crenatus extract efficiently inhibited both AChE and BChE activities in a dosage-dependent manner. Molecular docking was employed to scrutinize the anticholinesterase mechanisms of the identified phytocompounds. Notably, a network pharmacology analysis was executed for the most efficacious compound. Based on binding energies, hesperidin emerged as the most potent inhibitor against both AChE and BChE, exhibiting scores of -10.5 Kcal/mol and -9.8 Kcal/mol, respectively. Due to its dual inhibition of AChE and BChE activities, hesperidin from Astragalus crenatus holds promise for the development of novel therapeutics aimed at neurological disorders, particularly AD.

11.
Antioxidants (Basel) ; 13(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38929093

RESUMEN

The search results offer comprehensive insights into the phenolic compounds, antioxidant, anti-inflammatory, cytotoxic effects, LC-MS/MS analysis, molecular docking, and MD simulation of the identified phenolic compounds in the Astragalus arpilobus subsp. hauarensis extract (AAH). The analysis revealed substantial levels of total phenolic content (TPC), with a measured value of 191 ± 0.03 mg GAE/g DM. This high TPC was primarily attributed to two key phenolic compounds: total flavonoid content (TFC) and total tannin content (TTC), quantified at 80.82 ± 0.02 mg QE/g DM and 51.91 ± 0.01 mg CE/g DM, respectively. LC-MS/MS analysis identified 28 phenolic compounds, with gallic acid, protocatechuic acid, catechin, and others. In the DPPH scavenging assay, the IC50 value for the extract was determined to be 19.44 ± 0.04 µg/mL, comparable to standard antioxidants like BHA, BHT, ascorbic acid, and α-tocopherol. Regarding anti-inflammatory activity, the extract demonstrated a notably lower IC50 value compared to both diclofenac and ketoprofen, with values of 35.73 µg/mL, 63.78 µg/mL, and 164.79 µg/mL, respectively. Cytotoxicity analysis revealed significant cytotoxicity of the A. arpilobus extract, with an LC50 value of 28.84 µg/mL, which exceeded that of potassium dichromate (15.73 µg/mL), indicating its potential as a safer alternative for various applications. Molecular docking studies have highlighted chrysin as a promising COX-2 inhibitor, with favorable binding energies and interactions. Molecular dynamic simulations further support chrysin's potential, showing stable interactions with COX-2, comparable to the reference ligand S58. Overall, the study underscores the pharmacological potential of A. arpilobus extract, particularly chrysin, as a source of bioactive compounds with antioxidant and anti-inflammatory properties. Further research is warranted to elucidate the therapeutic mechanisms and clinical implications of these natural compounds.

12.
Med Sci Monit ; 19: 300-8, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23619778

RESUMEN

Diabetic retinopathy (DR) is the most common complication of diabetes. It causes vision loss, and the incidence is increasing with the growth of the diabetes epidemic worldwide. Over the past few decades a number of clinical trials have confirmed that careful control of glycemia and blood pressure can reduce the risk of developing DR and control its progression. In recent years, many treatment options have been developed for clinical management of the complications of DR (e.g., proliferative DR and macular edema) using laser-based therapies, intravitreal corticosteroids and anti-vascular endothelial growth factors, and vitrectomy to remove scarring and hemorrhage, but all these have limited benefits. In this review, we highlight and discuss potential molecular targets and new approaches that have shown great promise for the treatment of DR. New drugs and strategies are based on targeting a number of hyperglycemia-induced metabolic stress pathways, oxidative stress and inflammatory pathways, the renin-angiotensin system, and neurodegeneration, in addition to the use of stem cells and ribonucleic acid interference (RNAi) technologies. At present, clinical trials of some of these newer drugs in humans are yet to begin or are in early stages. Together, the new therapeutic drugs and approaches discussed may control the incidence and progression of DR with greater efficacy and safety.


Asunto(s)
Antiinflamatorios/uso terapéutico , Retinopatía Diabética/tratamiento farmacológico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Antioxidantes/uso terapéutico , Humanos , Hiperglucemia/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/metabolismo
13.
Int J Mol Sci ; 14(2): 2559-72, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23358247

RESUMEN

Diabetic retinopathy is widely considered to be a neurovascular disease. This is in contrast to its previous identity as solely a vascular disease. Early in the disease progression of diabetes, the major cells in the neuronal component of the retina consist of retinal ganglion cells and glial cells, both of which have been found to be compromised. A number of retinal function tests also indicated a functional deficit in diabetic retina, which further supports dysfunction of neuronal cells. As an endocrinological disorder, diabetes alters metabolism both systemically and locally in several body organs, including the retina. A growing body of evidences indicates increased levels of excitotoxic metabolites, including glutamate, branched chain amino acids and homocysteine in cases of diabetic retinopathy. Also present, early in the disease, are decreased levels of folic acid and vitamin-B12, which are potential metabolites capable of damaging neurons. These altered levels of metabolites are found to activate several metabolic pathways, leading to increases in oxidative stress and decreases in the level of neurotrophic factors. As a consequence, they may damage retinal neurons in diabetic patients. In this review, we have discussed those potential excitotoxic metabolites and their implications in neuronal damage. Possible therapeutic targets to protect neurons are also discussed. However, further research is needed to understand the exact molecular mechanism of neurodegeneration so that effective neuroprotection strategies can be developed. By protecting retinal neurons early in diabetic retinopathy cases, damage of retinal vessels can be protected, thereby helping to ameliorate the progression of diabetic retinopathy, a leading cause of blindness worldwide.

14.
Insect Sci ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114448

RESUMEN

Phenylacetaldehyde (PAH), an aromatic compound, is present in a diverse range of fruits including overripe bananas and prickly pear cactus, the two major host fruits for Drosophila melanogaster. PAH acts as a potent ligand for the ionotropic receptor 84a (IR84a) in the adult fruit fly and it is detected by the IR84a/IR8a heterotetrameric complex. Its role in the male courtship behavior through IR84a as an environmental aphrodisiac is of additional importance. In D. melanogaster, two distinct kinds of olfactory receptors, that is, odorant receptors (ORs) and ionotropic receptors (IRs), perceive the odorant stimuli. They display unique structural, molecular, and functional characteristics in addition to having different evolutionary origins. Traditionally, olfactory cues detected by the ORs such as ethyl acetate, 1-butanol, isoamyl acetate, 1-octanol, 4-methylcyclohexanol, etc. classified as aliphatic esters and alcohols have been employed in olfactory classical conditioning using fruit flies. This underlines the participation of OR-activated olfactory pathways in learning and memory formation. Our study elucidates that likewise ethyl acetate (EA) (an OR-responsive odorant), PAH (an IR-responsive aromatic compound) too can form learning and memory when associated with an appetitive gustatory reinforcer. The association of PAH with sucrose (PAH/SUC) led to learning and formation of the long-term memory (LTM). Additionally, the Orco1 , Ir84aMI00501 , and Ir8a1 mutant flies were used to confirm the exclusive participation of the IR84a/IR8a complex in PAH/SUC olfactory associative conditioning. These results highlight the involvement of IRs via an IR-activated pathway in facilitating robust olfactory behavior.

15.
Metabolites ; 13(7)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37512570

RESUMEN

Our previous study uncovered potent inhibitory effects of two naphthoquinones from Impatiens balsamina, namely lawsone methyl ether (2-methoxy-1,4-naphthoquinone, LME) and lawsone (2-hydroxy-1,4-naphthoquinone), against α-glucosidase. This gave us the insight to compare the hypoglycemic and hypolipidemic effects of LME and lawsone in high-fat/high-fructose-diet- and nicotinamide-streptozotocin-induced diabetic rats for 28 days. LME and lawsone at the doses of 15, 30, and 45 mg/kg, respectively, produced a substantial and dose-dependent reduction in the levels of fasting blood glucose (FBG), HbA1c, and food/water intake while boosting the insulin levels and body weights of diabetic rats. Additionally, the levels of total cholesterol (TC), triglycerides (TGs), high-density lipoproteins (HDLs), low-density lipoproteins (LDLs), aspartate transaminase (AST), alanine transaminase (ALT), creatinine, and blood urea nitrogen (BUN) in diabetic rats were significantly normalized by LME and lawsone, without affecting the normal rats. LME at a dose of 45 mg/kg exhibited the most potent antihyperglycemic and antihyperlipidemic effects, which were significantly comparable to glibenclamide but higher than those of lawsone. Furthermore, the toxicity evaluation indicated that both naphthoquinones were entirely safe for use in rodent models at doses ≤ 50 mg/kg. Therefore, the remarkable antihyperglycemic and antihyperlipidemic potentials of LME make it a promising option for future drug development.

16.
Saudi J Biol Sci ; 30(9): 103779, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37663397

RESUMEN

Cerebrovascular disease is a threat to people with diabetes and hypertension. Diabetes can damage the brain by stimulating the renin-angiotensin system (RAS), leading to neurological deficits and brain strokes. Diabetes-induced components of the RAS, including angiotensin-converting enzyme (ACE), angiotensin-II (Ang-II), and angiotensin type 1 receptor (AT1R), have been linked to various neurological disorders in the brain. In this study, we investigated how diabetes and high blood pressure affected the regulation of these major RAS components in the frontal cortex of the rat brain. We dissected, homogenized, and processed the brain cortex tissues of control, streptozotocin-induced diabetic, spontaneously hypertensive (SHR), and streptozotocin-induced SHR rats for biochemical and Western blot analyses. We found that systolic blood pressure was elevated in SHR rats, but there was no significant difference between SHR and diabetic-SHR rats. In contrast to SHR rats, the heartbeat of diabetic SHR rats was low. Western blot analysis showed that the frontal cortexes of the brain expressed angiotensinogen, AT1R, and MAS receptor. There were no significant differences in angiotensinogen levels across the rat groups. However, the AT1R level was increased in diabetic and hypertensive rats compared to controls, whereas the MAS receptor was downregulated (p < 0.05). These findings suggest that RAS overactivation caused by diabetes may have negative consequences for the brain's cortex, leading to neurodegeneration and cognitive impairment.

17.
Biomedicines ; 11(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36831076

RESUMEN

BACKGROUND: Suppressor of fused (SuFu) is a tumor-suppressor gene that regulates hedgehog signaling. Its involvement in some malignancies is broadly accepted. However, its association with colorectal cancer (CRC) pathogenesis is not clear. Likewise, no study has clearly associated blood-based inflammatory biomarkers with cancer diagnosis/prognosis as yet. AIM: Our goal was to look at SuFu expression levels in CRC patients and its relationship with other clinicopathological factors. Additionally, we looked into the function of a few blood-based biomarkers in CRC and whether or not a combined strategy at the genetic and clinical levels can be applied in CRC. METHODS: The investigation included 98 histopathologically confirmed CRC samples and adjacent normal tissues (controls). A colonoscopy was followed by a targeted biopsy for each suspected colon cancer patient. A CT scan and MRI were also performed on every patient with rectal cancer. Real-time polymerase chain reaction and immunohistochemistry (IHC) were used for assessment. A Beckman Coulter DxH900 was used to examine blood parameters. A Beckman Coulter DxI800 was used to identify pretreatment carcinoma embryonic antigens (CEA) and carbohydrate antigens (CA 19-9) in CRC patients. RESULTS: The expression of SuFu was associated with gender, education, passive smoking, tumor grade, perineural invasion (PNI), lymph node metastasis (LNM), node status, stage, vital status, and recurrence (p < 0.05). In the combined analysis, the areas under the curve produced by the platelet-to-lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio (NLR), and red cell distribution width (RDW) were the greatest (AUCRDW+PLR+NLR = 0.91, 95% CI: 0.86-0.93, p < 0.05). Furthermore, the most severe pathological features were linked to RDW, PLR, NLR, and HPR. SuFu expression, node status, LNM, PNI, and stage all had significant correlations with OS and DFS rates in IHC-based univariate survival analysis (p < 0.05). According to the Cox regression, CA-19.9 had a strong independent predictive link with 3-year DFS (p < 0.05). CONCLUSION: In CRC, SuFu was downregulated both transcriptionally and translationally, was primarily nucleo-cytoplasmic, and was expressed less in high-grade tumors. In addition, SuFu was linked to a poor overall and disease-free survival rate. It may be possible to use SuFu as a therapeutic target for CRC in the future. However, SuFu expression had no effect on RDW, PLR, NLR, or HPR serum levels.

18.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37513927

RESUMEN

This study aimed to investigate the chemical composition and antidiabetic properties of cultivated Hyoscyamus albus L. The ethanol extract was analyzed using LC-MS/MS, and 18 distinct phenolic compounds were identified. Among these, p-coumaric acid (6656.8 ± 3.4 µg/g), gallic acid (6516 ± 1.7 µg/g), luteolin (6251.9 ± 1.3 µg/g), apigenin (6209.9 ± 1.1 µg/g), and rutin (5213.9 ± 1.3 µg/g) were identified as the most abundant polyphenolic molecules. In the in vitro antidiabetic experiment, the ability of the plant extract to inhibit α-glucosidase and α-amylase activities was examined. The results indicated that the extract from H. albus L. exhibited a higher inhibitory effect on α-amylase compared to α-glucosidase, with an IC50 of 146.63 ± 1.1 µg/mL and 270.43 ± 1.1 µg/mL, respectively. Docking simulations revealed that luteolin, fisetin, and rutin exhibited the most promising inhibitory activity against both enzymes, as indicated by their high contrasting inhibition scores. To further investigate the in vivo antidiabetic effects of H. albus L., an experiment was conducted using STZ-induced diabetic mice. The results demonstrated that the plant extract effectively reduced the levels of cholesterol and triglycerides. These findings suggest that H. albus L. may have therapeutic potential for managing hyperlipidemia, a common complication associated with diabetes. This highlights its potential as a natural remedy for diabetes and related conditions.

19.
Int J Biol Macromol ; 237: 124140, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36965568

RESUMEN

An excess of thyroid hormones in the blood characterizes hyperthyroidism. Long-term use of prescription medications to treat hyperthyroidism has substantial adverse effects and when discontinued, the symptoms frequently recur. Several plant species have been utilized to cure hyperthyroidism. In the present work, we investigated the impact of polyherbal extract (POH) of four medicinal plants to treat hyperthyroidism. Biochemical analysis revealed the presence of a high concentration of phytochemicals in the POHs. The in vitro antioxidant study revealed their antioxidant and free radical scavenging capacity. The gas chromatography coupled mass spectrometry analysis of the POHs showed the presence of 13 bioactive phytochemical compounds. The effect of various concentrations of POHs on L-thyroxine-induced hyperthyroidism in Wistar albino rats was evaluated for 18 days. The TSH, T3 and T4 levels increased significantly and reduced the increase of liver enzymes caused by hyperthyroidism in POH-treated rats. The data showed that POH therapy could restore thyroid function to normal. The injection of POH increased the size comprising vacuolated cells, columnar follicular cells and highly coloured nuclei with increasing POH content and the number of normal thyroid follicles rose. The findings indicate that polyherbal formulations of these medicinal plants include credible antithyroid compounds that may offer a protective and an effective alternative treatment to synthetic thyroid medications.


Asunto(s)
Hipertiroidismo , Tiroxina , Animales , Ratas , Tiroxina/efectos adversos , Antioxidantes/farmacología , Ratas Wistar , Cromatografía de Gases y Espectrometría de Masas , Hormonas Tiroideas/efectos adversos , Hipertiroidismo/inducido químicamente , Hipertiroidismo/tratamiento farmacológico , Fitoquímicos/uso terapéutico
20.
Gels ; 8(5)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35621572

RESUMEN

Alpha-crystallin protein performs structural and chaperone functions in the lens and comprises alphaA and alphaB subunits at a molar ratio of 3:1. The highly complex alpha-crystallin structure challenges structural biologists because of its large dynamic quaternary structure (300−1000 kDa). Camel lens alpha-crystallin is a poorly characterized molecular chaperone, and the alphaB subunit possesses a novel extension at the N-terminal domain. We purified camel lens alpha-crystallin using size exclusion chromatography, and the purity was analyzed by gradient (4−12%) sodium dodecyl sulfate−polyacrylamide gel electrophoresis. Alpha-crystallin was equilibrated in the pH range of 1.0 to 7.5. Subsequently, thermal stress (20−94 °C) was applied to the alpha-crystallin samples, and changes in the conformation and stability were recorded by dynamic multimode spectroscopy and intrinsic and extrinsic fluorescence spectroscopic methods. Camel lens alpha-crystallin formed a random coil-like structure without losing its native-like beta-sheeted structure under two conditions: >50 °C at pH 7.5 and all temperatures at pH 2.0. The calculated enthalpy of denaturation, as determined by dynamic multimode spectroscopy at pH 7.5, 4.0, 2.0, and 1.0 revealed that alpha-crystallin never completely denatures under acidic conditions or thermal denaturation. Alpha-crystallin undergoes a single, reversible thermal transition at pH 7.5. The thermodynamic data (unfolding enthalpy and heat capacity change) and chaperone activities indicated that alpha-crystallin does not completely unfold above the thermal transition. Camels adapted to live in hot desert climates naturally exhibit the abovementioned unique features.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA