Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Data ; 11(1): 96, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242926

RESUMEN

Astrocytes, a type of glial cell, significantly influence neuronal function, with variations in morphology and density linked to neurological disorders. Traditional methods for their accurate detection and density measurement are laborious and unsuited for large-scale operations. We introduce a dataset from human brain tissues stained with aldehyde dehydrogenase 1 family member L1 (ALDH1L1) and glial fibrillary acidic protein (GFAP). The digital whole slide images of these tissues were partitioned into 8730 patches of 500 × 500 pixels, comprising 2323 ALDH1L1 and 4714 GFAP patches at a pixel size of 0.5019/pixel, furthermore 1382 ADHD1L1 and 311 GFAP patches at 0.3557/pixel. Sourced from 16 slides and 8 patients our dataset promotes the development of tools for glial cell detection and quantification, offering insights into their density distribution in various brain areas, thereby broadening neuropathological study horizons. These samples hold value for automating detection methods, including deep learning. Derived from human samples, our dataset provides a platform for exploring astrocyte functionality, potentially guiding new diagnostic and treatment strategies for neurological disorders.


Asunto(s)
Aprendizaje Profundo , Enfermedades del Sistema Nervioso , Humanos , Astrocitos/metabolismo , Encéfalo/patología , Neuroglía
2.
medRxiv ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38883738

RESUMEN

Patients with High-Grade Serous Ovarian Cancer (HGSOC) exhibit varied responses to treatment, with 20-30% showing de novo resistance to platinum-based chemotherapy. While hematoxylin-eosin (H&E) pathological slides are used for routine diagnosis of cancer type, they may also contain diagnostically useful information about treatment response. Our study demonstrates that combining H&E-stained Whole Slide Images (WSIs) with proteomic signatures using a multimodal deep learning framework significantly improves the prediction of platinum response in both discovery and validation cohorts. This method outperforms the Homologous Recombination Deficiency (HRD) score in predicting platinum response and overall patient survival. The study sets new performance benchmarks and explores the intersection of histology and proteomics, highlighting phenotypes related to treatment response pathways, including homologous recombination, DNA damage response, nucleotide synthesis, apoptosis, and ER stress. This integrative approach has the potential to improve personalized treatment and provide insights into the therapeutic vulnerabilities of HGSOC.

3.
Nat Comput Sci ; 2(12): 845-865, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38177393

RESUMEN

Machine learning (ML) is a key technology for accurate prediction of antibody-antigen binding. Two orthogonal problems hinder the application of ML to antibody-specificity prediction and the benchmarking thereof: the lack of a unified ML formalization of immunological antibody-specificity prediction problems and the unavailability of large-scale synthetic datasets to benchmark real-world relevant ML methods and dataset design. Here we developed the Absolut! software suite that enables parameter-based unconstrained generation of synthetic lattice-based three-dimensional antibody-antigen-binding structures with ground-truth access to conformational paratope, epitope and affinity. We formalized common immunological antibody-specificity prediction problems as ML tasks and confirmed that for both sequence- and structure-based tasks, accuracy-based rankings of ML methods trained on experimental data hold for ML methods trained on Absolut!-generated data. The Absolut! framework has the potential to enable real-world relevant development and benchmarking of ML strategies for biotherapeutics design.


Asunto(s)
Anticuerpos , Reacciones Antígeno-Anticuerpo , Especificidad de Anticuerpos , Epítopos/química , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA