Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Hum Exp Toxicol ; 43: 9603271241248631, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646969

RESUMEN

BACKGROUND: Fresh Menthol 3% Nicotine (FM3) is a novel JUUL e-liquid formulation. Its potential toxicity and that of the corresponding base formulation relative to a filtered air (FA) control was studied in a subchronic inhalation study conducted in general accordance with OECD 413. METHODS: Aerosols generated with an intense puffing regime were administered to rats in a nose-only fashion at 1400 µg aerosol collected mass/L on a 6 hour/day basis for 90 days with a 42-day recovery. Exposure atmospheres met target criteria. Systemic exposure was confirmed by plasma measurement of nicotine. RESULTS: No test article-related mortality, clinical signs (other than reversible lower body weight gains in males), clinical pathology or gross findings were noted during this study. No microscopic lesions related to base formulation exposure were identified. Minimal microscopic lesions were observed in the FM3 6-hour exposure group. Microscopic lesions observed in the FM3 6-hour exposure group comprised only minimal laryngeal squamous metaplasia in one male and one female animal. No microscopic lesions related to FM3 exposure remained after the recovery period. CONCLUSION: Exposure atmosphere characterization indicated that conditions were achieved to permit thorough assessment of test articles and results indicate a low order of toxicity for the FM3 Electronic nicotine delivery systems (ENDS) formulation and its base formulation.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Nicotina , Animales , Masculino , Femenino , Nicotina/toxicidad , Nicotina/administración & dosificación , Administración por Inhalación , Pruebas de Toxicidad Subcrónica , Aerosoles , Mentol/toxicidad , Mentol/administración & dosificación , Ratas Sprague-Dawley , Ratas , Exposición por Inhalación
2.
Hum Exp Toxicol ; 43: 9603271241269022, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101688

RESUMEN

BACKGROUND: One of the challenges to using some flavor chemicals in aerosol products is the lack of route of administration specific toxicology data. METHODS: Flavor chemicals (88) were divided into four different flavor mixtures based upon chemical compatibility and evaluated in 2-week dose-range-finding and subsequent 90-day nose-only rodent inhalation studies (OECD 413 and GLP compliant). Sprague-Dawley rats were exposed to vehicle control or one of three increasing concentrations of each flavor mixture. RESULTS: In the dose-range-range-finding studies, exposure to flavor mixture four resulted in adverse nasal histopathology in female rats at the high dose, resulting in this flavor mixture not being evaluated in a 90-day study. In the 90-day studies daily exposures to the three flavor mixtures did not induce biologically meaningful adverse effects (food consumption, body weights, respiratory physiology, serum chemistry, hematology, coagulation, urinalysis, bronchoalveolar lavage fluid analysis and terminal organ weights). All histopathology findings were observed in both vehicle control and flavor mixture exposed animals, with similar incidences and/or severities, and therefore were not considered flavor mixture related. CONCLUSION: Based on the absence of adverse effects, the no-observed-adverse-effect concentration for each 90-day inhalation study was the highest dose tested, 2.5 mg/L of the aerosolized high dose of the three flavor mixtures.


Asunto(s)
Aromatizantes , Nivel sin Efectos Adversos Observados , Ratas Sprague-Dawley , Animales , Femenino , Aromatizantes/toxicidad , Masculino , Exposición por Inhalación , Ratas , Relación Dosis-Respuesta a Droga , Administración por Inhalación , Ingestión de Alimentos/efectos de los fármacos
3.
Toxics ; 12(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38250996

RESUMEN

Electronic nicotine delivery systems (ENDSs) are designed as a non-combustible alternative to cigarettes, aiming to deliver nicotine without the harmful byproducts of tobacco combustion. As the category evolves and new ENDS products emerge, it is important to continually assess the levels of toxicologically relevant chemicals in the aerosols and characterize any related toxicology. Herein, we present a proposed framework for characterizing novel ENDS products (i.e., devices and formulations) and determining the reduced risk potential utilizing analytical chemistry and in vitro toxicological studies with a qualitative risk assessment. To demonstrate this proposed framework, long-term stability studies (12 months) analyzing relevant toxicant emissions from six formulations of a next-generation product, JUUL2, were conducted and compared to reference combustible cigarette (CC) smoke under both non-intense and intense puffing regimes. In addition, in vitro cytotoxicity, mutagenicity, and genotoxicity assays were conducted on aerosol and smoke condensates. In all samples, relevant toxicants under both non-intense and intense puffing regimes were substantially lower than those observed in reference CC smoke. Furthermore, neither cytotoxicity, mutagenicity, nor genotoxicity was observed in aerosol condensates generated under both intense and non-intense puffing regimes, in contrast to results observed for reference cigarettes. Following the proposed framework, the results demonstrate that the ENDS products studied in this work generate significantly lower levels of toxicants relative to reference cigarettes and were not cytotoxic, mutagenic, or genotoxic under these in vitro assay conditions.

4.
Toxics ; 12(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38250972

RESUMEN

Toxicological evaluations of flavor chemicals for use in inhalation products that utilize heat for aerosol generation are complicated because of the potential effect heat may have on the flavor chemical. The objective was to develop a thermal degradation technique to screen flavor chemicals as part of a toxicological testing program for their potential use in ENDS formulations. Based upon published data for acetaldehyde, acrolein, and glycidol from ENDS products (common thermal degradants of propylene glycol and glycerin), the pyrolizer temperature was adjusted until a similar ratio of acetaldehyde, acrolein, and glycidol was obtained from a 60/40 ratio (v/v) of glycerin/propylene glycol via GC/MS analysis. For each of 90 flavor chemicals, quantitative measurements of acetaldehyde, acrolein, and glycidol, in addition to semiquantitative non-targeted analysis tentatively identifying chemicals from thermal degradation, were obtained. Twenty flavor chemicals transferred at greater than 99% intact, another 26 transferred at greater than 95% intact, and another 15 flavor chemicals transferred at greater than 90% intact. Most flavor chemicals resulted in fewer than 10-12 tentatively identified thermal degradants. The practical approach to the thermal degradation of flavor chemicals provided useful information as part of the toxicological evaluation of flavor chemicals for potential use in ENDS formulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA