Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Genes Dev ; 36(15-16): 916-935, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36175033

RESUMEN

Alternative polyadenylation (APA) generates transcript isoforms that differ in the position of the 3' cleavage site, resulting in the production of mRNA isoforms with different length 3' UTRs. Although widespread, the role of APA in the biology of cells, tissues, and organisms has been controversial. We identified >500 Drosophila genes that express mRNA isoforms with a long 3' UTR in proliferating spermatogonia but a short 3' UTR in differentiating spermatocytes due to APA. We show that the stage-specific choice of the 3' end cleavage site can be regulated by the arrangement of a canonical polyadenylation signal (PAS) near the distal cleavage site but a variant or no recognizable PAS near the proximal cleavage site. The emergence of transcripts with shorter 3' UTRs in differentiating cells correlated with changes in expression of the encoded proteins, either from off in spermatogonia to on in spermatocytes or vice versa. Polysome gradient fractionation revealed >250 genes where the long 3' UTR versus short 3' UTR mRNA isoforms migrated differently, consistent with dramatic stage-specific changes in translation state. Thus, the developmentally regulated choice of an alternative site at which to make the 3' end cut that terminates nascent transcripts can profoundly affect the suite of proteins expressed as cells advance through sequential steps in a differentiation lineage.


Asunto(s)
Células Madre Adultas , Isoformas de ARN , Regiones no Traducidas 3'/genética , Células Madre Adultas/metabolismo , Animales , Masculino , Poliadenilación , Isoformas de Proteínas/genética , Isoformas de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Cell ; 142(5): 674-6, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20813254

RESUMEN

The generation of planar cell polarity (PCP) and tissue shape during morphogenesis is tightly linked, but it is not clear how. Aigouy et al. (2010) now show in the developing Drosophila wing that PCP initially has a radial orientation that becomes realigned to the proximal-distal axis of organ shape by mechanical forces and cell rearrangements mediated by Dachsous.

3.
Hum Genet ; 142(8): 1303-1315, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37368047

RESUMEN

Hereditary spastic paraplegias (HSPs) are a group of neurodegenerative disorders characterized by progressive dysfunction of corticospinal motor neurons. Mutations in Atlastin1/Spg3, a small GTPase required for membrane fusion in the endoplasmic reticulum, are responsible for 10% of HSPs. Patients with the same Atlastin1/Spg3 mutation present high variability in age at onset and severity, suggesting a fundamental role of the environment and genetic background. Here, we used a Drosophila model of HSPs to identify genetic modifiers of decreased locomotion associated with atlastin knockdown in motor neurons. First, we screened for genomic regions that modify the climbing performance or viability of flies expressing atl RNAi in motor neurons. We tested 364 deficiencies spanning chromosomes two and three and found 35 enhancer and four suppressor regions of the climbing phenotype. We found that candidate genomic regions can also rescue atlastin effects at synapse morphology, suggesting a role in developing or maintaining the neuromuscular junction. Motor neuron-specific knockdown of 84 genes spanning candidate regions of the second chromosome identified 48 genes required for climbing behavior in motor neurons and 7 for viability, mapping to 11 modifier regions. We found that atl interacts genetically with Su(z)2, a component of the Polycomb repressive complex 1, suggesting that epigenetic regulation plays a role in the variability of HSP-like phenotypes caused by atl alleles. Our results identify new candidate genes and epigenetic regulation as a mechanism modifying neuronal atl pathogenic phenotypes, providing new targets for clinical studies.


Asunto(s)
Drosophila , Paraplejía Espástica Hereditaria , Animales , Proteínas de la Membrana/genética , Paraplejía Espástica Hereditaria/genética , Epigénesis Genética , Mutación
4.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35886916

RESUMEN

We are all similar but a bit different. These differences are partially due to variations in our genomes and are related to the heterogeneity of symptoms and responses to treatments that patients exhibit. Most animal studies are performed in one single strain with one manipulation. However, due to the lack of variability, therapies are not always reproducible when treatments are translated to humans. Panels of already sequenced organisms are valuable tools for mimicking human phenotypic heterogeneities and gene mapping. This review summarizes the current knowledge of mouse, fly, and yeast panels with insightful applications for translational research.


Asunto(s)
Saccharomyces cerevisiae , Investigación Biomédica Traslacional , Animales , Mapeo Cromosómico , Antecedentes Genéticos , Genoma , Humanos , Ratones , Saccharomyces cerevisiae/genética
5.
Development ; 140(6): 1282-91, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23444356

RESUMEN

Cell growth and proliferation are pivotal for final organ and body size definition. p53-related protein kinase (Bud32/PRPK) has been identified as a protein involved in proliferation through its effects on transcription in yeast and p53 stabilization in human cell culture. However, the physiological function of Bud32/PRPK in metazoans is not well understood. In this work, we have analyzed the role of PRPK in Drosophila development. Drosophila PRPK is expressed in every tissue analyzed and is required to support proliferation and cell growth. The Prpk knockdown animals show phenotypes similar to those found in mutants for positive regulators of the PI3K/TOR pathway. This pathway has been shown to be fundamental for animal growth, transducing the hormonal and nutritional status into the protein translation machinery. Functional interactions have established that Prpk operates as a transducer of the PI3K/TOR pathway, being essential for TOR kinase activation and for the regulation of its targets (S6K and 4E-BP, autophagy and bulk endocytosis). This suggests that Prpk is crucial for stimulating the basal protein biosynthetic machinery in response to insulin signaling and to changes in nutrient availability.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Serina-Treonina Quinasas TOR/fisiología , Animales , Animales Modificados Genéticamente , Proliferación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Femenino , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Organogénesis/genética , Organogénesis/fisiología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Alas de Animales/embriología , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
6.
Open Biol ; 13(5): 230049, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37161288

RESUMEN

Nutrient scarcity is a frequent adverse condition that organisms face during their development. This condition may lead to long-lasting effects on the metabolism and behaviour of adults due to developmental epigenetic modifications. Here, we show that reducing nutrient availability during larval development affects adult spontaneous activity and sleep behaviour, together with changes in gene expression and epigenetic marks in the mushroom bodies (MBs). We found that open chromatin regions map to 100 of 241 transcriptionally upregulated genes in the adult MBs, these new opening zones are preferentially located in regulatory zones such as promoter-TSS and introns. Importantly, opened chromatin at the Dopamine 1-like receptor 2 regulatory zones correlate with increased expression. In consequence, adult administration of a dopamine antagonist reverses increased spontaneous activity and diminished sleep time observed in response to early-life nutrient restriction. In comparison, reducing dop1R2 expression in MBs also ameliorates these effects, albeit to a lesser degree. These results lead to the conclusion that increased dopamine signalling in the MBs of flies reared in a poor nutritional environment underlies the behavioural changes observed due to this condition during development.


Asunto(s)
Dopamina , Drosophila , Animales , Drosophila/genética , Larva/genética , Dieta , Encéfalo , Cromatina/genética , Epigénesis Genética , Nutrientes
7.
Sleep ; 46(4)2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36718043

RESUMEN

The mechanisms by which the genotype interacts with nutrition during development to contribute to the variation of complex behaviors and brain morphology of adults are not well understood. Here we use the Drosophila Genetic Reference Panel to identify genes and pathways underlying these interactions in sleep behavior and mushroom body morphology. We show that early-life nutritional restriction effects on sleep behavior and brain morphology depends on the genotype. We mapped genes associated with sleep sensitivity to early-life nutrition, which were enriched for protein-protein interactions responsible for translation, endocytosis regulation, ubiquitination, lipid metabolism, and neural development. By manipulating the expression of candidate genes in the mushroom bodies (MBs) and all neurons, we confirm that genes regulating neural development, translation and insulin signaling contribute to the variable response of sleep and brain morphology to early-life nutrition. We show that the interaction between differential expression of candidate genes with nutritional restriction in early life resides in the MBs or other neurons and that these effects are sex-specific. Natural variations in genes that control the systemic response to nutrition and brain development and function interact with early-life nutrition in different types of neurons to contribute to the variation of brain morphology and adult sleep behavior.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Masculino , Femenino , Drosophila melanogaster/genética , Drosophila/genética , Encéfalo/fisiología , Sueño/fisiología , Genes del Desarrollo
8.
Life Sci Alliance ; 5(12)2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35940847

RESUMEN

Actin filament polymerization can be branched or linear, which depends on the associated regulatory proteins. Competition for actin monomers occurs between proteins that induce branched or linear actin polymerization. Cell specialization requires the regulation of actin filaments to allow the formation of cell type-specific structures, like cuticular hairs in <i>Drosophila</i>, formed by linear actin filaments. Here, we report the functional analysis of CG34401/<i>pelado</i>, a gene encoding a SWIM domain-containing protein, conserved throughout the animal kingdom, called ZSWIM8 in mammals. Mutant <i>pelado</i> epithelial cells display actin hair elongation defects. This phenotype is reversed by increasing actin monomer levels or by either pushing linear actin polymerization or reducing branched actin polymerization. Similarly, in hemocytes, Pelado is essential to induce filopodia, a linear actin-based structure. We further show that this function of Pelado/ZSWIM8 is conserved in human cells, where Pelado inhibits branched actin polymerization in a cell migration context. In summary, our data indicate that the function of Pelado/ZSWIM8 in regulating actin cytoskeletal dynamics is conserved, favoring linear actin polymerization at the expense of branched filaments.


Asunto(s)
Citoesqueleto de Actina , Actinas , Ubiquitina-Proteína Ligasas/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Citoesqueleto/metabolismo , Humanos , Mamíferos/metabolismo , Polimerizacion , Seudópodos/metabolismo
9.
Sci Rep ; 10(1): 21731, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303974

RESUMEN

Organ cell diversity depends on binary cell-fate decisions mediated by the Notch signalling pathway during development and tissue homeostasis. A clear example is the series of binary cell-fate decisions that take place during asymmetric cell divisions that give rise to the sensory organs of Drosophila melanogaster. The regulated trafficking of Sanpodo, a transmembrane protein that potentiates receptor activity, plays a pivotal role in this process. Membrane lipids can regulate many signalling pathways by affecting receptor and ligand trafficking. It remains unknown, however, whether phosphatidic acid regulates Notch-mediated binary cell-fate decisions during asymmetric cell divisions, and what are the cellular mechanisms involved. Here we show that increased phosphatidic acid derived from Phospholipase D leads to defects in binary cell-fate decisions that are compatible with ectopic Notch activation in precursor cells, where it is normally inactive. Null mutants of numb or the α-subunit of Adaptor Protein complex-2 enhance dominantly this phenotype while removing a copy of Notch or sanpodo suppresses it. In vivo analyses show that Sanpodo localization decreases at acidic compartments, associated with increased internalization of Notch. We propose that Phospholipase D-derived phosphatidic acid promotes ectopic Notch signalling by increasing receptor endocytosis and inhibiting Sanpodo trafficking towards acidic endosomes.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/genética , Mecanorreceptores/fisiología , Organogénesis/efectos de los fármacos , Organogénesis/genética , Ácidos Fosfatidicos/farmacología , Transporte de Proteínas/genética , Receptores Notch/metabolismo , Transducción de Señal/efectos de los fármacos , Complejo 2 de Proteína Adaptadora/fisiología , Animales , División Celular Asimétrica , Drosophila/citología , Drosophila/embriología , Proteínas de Drosophila/fisiología , Endocitosis/fisiología , Endosomas/metabolismo , Femenino , Hormonas Juveniles/fisiología , Proteínas de Microfilamentos/metabolismo
10.
Trends Mol Med ; 25(12): 1052-1055, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31676188

RESUMEN

A mechanistic understanding of the diverse clinical manifestations of Parkinson's disease (PD) and variable patient response to treatments is lacking. Genetically diverse PD model organisms can be used to map modifier genes and understand clinically relevant phenotypes of varying severity. This strategy can accelerate the pace of discoveries for precision medicine purposes.


Asunto(s)
Enfermedad de Parkinson/genética , Medicina de Precisión , Animales , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Fenotipo
11.
Gene Expr Patterns ; 8(6): 443-451, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18501681

RESUMEN

The products of the Drosophila discs-large (dlg) gene are members of the MAGUK family of proteins, a group of proteins involved in localization, transport and recycling of receptors and channels in cell junctions, including the synapse. In vertebrates, four genes with multiple splice variants homologous to dlg are described. dlg originates two main proteins, DLGA, similar to the vertebrate neuronal protein PSD95, and DLGS97, similar to the vertebrate neuronal and epithelial protein SAP97. DLGA is expressed in epithelia, neural tissue and muscle. DLGS97 is expressed in neural tissue and muscle but not in epithelia. The distinctive difference between them is the presence in DLGS97 of an L27 domain. The differential expression between these variants makes the study of DLGS97 of key relevance to understand the in vivo role of synaptic MAGUKs in neurons. Here we present the temporal and spatial expression pattern of DLGS97 during embryonic and larval nervous system development, during eye development and in adult brain. Our results show that DLGS97 is expressed zygotically, in neurons in the embryo, larvae and adult, and is absent at all stages in glial cells. During eye development DLGS97 starts to be expressed in photoreceptor cells at early stages of differentiation and localizes basal to the basolateral junctions. In the brain, DLGS97 is expressed in the mushroom bodies and optic lobes at larval and adult stages; and in the antennal lobe in the adult stage. In addition we show that both, dlgS97 and dlgA transcripts, express during development multiple splice variants with differences in the use of exons in two sites.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas Musculares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Empalme Alternativo , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Drosophila/embriología , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrión no Mamífero/metabolismo , Proteínas Musculares/genética , Proteínas del Tejido Nervioso/genética , Células Fotorreceptoras de Invertebrados/embriología , Células Fotorreceptoras de Invertebrados/metabolismo , ARN Mensajero/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
13.
Mech Dev ; 154: 309-314, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30213743

RESUMEN

During musculoskeletal system development, mechanical tension is generated between muscles and tendon-cells. This tension is required for muscle differentiation and is counterbalanced by tendon-cells avoiding tissue deformation. Both, Jbug/Filamin, an actin-meshwork organizing protein, and non-muscle Myosin-II (Myo-II) are required to maintain the shape and cell orientation of the Drosophila notum epithelium during flight muscle attachment to tendon cells. Here we show that halving the genetic dose of Rho kinase (Drok), the main activator of Myosin-II, enhances the epithelial deformation and bristle orientation defects associated with jbug/Filamin knockdown. Drok and activated Myo-II localize at the apical cell junctions, tendon processes and are associated to the myotendinous junction. Further, we found that Jbug/Filamin co-distribute at tendon cells with activated Myo-II. Finally, we found that Jbug/Filamin and Myo-II are in the same molecular complex and that the actin-binding domain of Jbug/Filamin is necessary for this interaction. These data together suggest that Jbug/Filamin and Myo-II proteins may act together in tendon cells to balance the tension generated during development of muscles-tendon interaction, maintaining the shape and polarity of the Drosophila notum epithelium.


Asunto(s)
Polaridad Celular/fisiología , Epitelio/metabolismo , Filaminas/metabolismo , Desarrollo Musculoesquelético/fisiología , Miosina Tipo II/metabolismo , Tendones/metabolismo , Actinas/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Tendones/fisiología , Quinasas Asociadas a rho/metabolismo
14.
J Neurosci ; 26(10): 2820-9, 2006 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-16525062

RESUMEN

RE-1 silencer of transcription/neural restrictive silencer factor (REST/NRSF), a transcriptional repressor, binds to the RE-1 element present in many vertebrate genes. In vitro studies indicate that REST/NRSF plays important roles in several stages of neural development. However, a full understanding of its physiological function requires in vivo approaches. We find that impairment of REST/NRSF function in Xenopus embryos leads to the perturbation of neural tube, cranial ganglia, and eye development. The origin of these defects is the abnormal patterning of the ectoderm during gastrulation. Interference of REST/NRSF function during the late blastula stage leads to an expansion of the neural plate, concomitant with a decrease of the expression of epidermal keratin and neural crest markers. Furthermore, neurogenesis proceeds abnormally, with loss of the expression of proneural, neurogenic, and neuronal genes. The interference of REST/NRSF mimics several features associated with a decreased bone morphogenetic protein (BMP) function and counteracts some effects of BMP4 misexpression. Our results indicate that REST/NRSF function is required in vivo for the acquisition of specific ectodermal cell fates.


Asunto(s)
Tipificación del Cuerpo/fisiología , Ectodermo/metabolismo , Neuronas/fisiología , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología , Animales , Tipificación del Cuerpo/efectos de los fármacos , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Microinyecciones/métodos , Biología Molecular/métodos , Morfogénesis , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos , Xenopus
15.
Front Cell Dev Biol ; 5: 26, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28386542

RESUMEN

The development of the musculoskeletal system is a great model to study the interplay between chemical and mechanical inter-tissue signaling in cell adhesion, tissue morphogenesis and differentiation. In both vertebrates and invertebrates (e.g., Drosophila melanogaster) the formation of muscle-tendon interaction generates mechanical forces which are required for myotendinous junction maturation and tissue differentiation. In addition, these forces must be withstood by muscles and tendons in order to prevent detachment from each other, deformation or even losing their integrity. Extracellular matrix remodeling at the myotendinous junction is key to resist mechanical load generated by muscle contraction. Recent evidences in vertebrates indicate that mechanical forces generated during junction formation regulate chemical signaling leading to extracellular matrix remodeling, however, the mechanotransduction mechanisms associated to this response remains elusive. In addition to extracellular matrix remodeling, the ability of Drosophila tendon-cells to bear mechanical load depends on rearrangement of tendon cell cytoskeleton, thus studying the molecular mechanisms involved in this process is critical to understand the contribution of mechanical forces to the development of the musculoskeletal system. Here, we review recent findings regarding the role of chemical and mechanical signaling in myotendinous junction formation and tendon differentiation, and discuss molecular mechanisms of mechanotransduction that may allow tendon cells to withstand mechanical load during development of the musculoskeletal system.

16.
Genetics ; 204(3): 1139-1149, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27585845

RESUMEN

The assembly of the musculoskeletal system in Drosophila relies on the integration of chemical and mechanical signaling between the developing muscles with ectodermal cells specialized as "tendon cells." Mechanical tension generated at the junction of flight muscles and tendon cells of the notum epithelium is required for muscle morphogenesis, and is balanced by the epithelium in order to not deform. We report that Drosophila Rho kinase (DRok) is necessary in tendon cells to assemble stable myotendinous junctions (MTJ), which are required for muscle morphogenesis and survival. In addition, DRok is required in tendon cells to maintain epithelial shape and cell orientation in the notum, independently of chascon (chas). Loss of DRok function in tendon cells results in mis-orientation of tendon cell extensions and abnormal accumulation of Thrombospondin and ßPS-integrin, which may cause abnormal myotendinous junction formation and muscle morphogenesis. This role does not depend exclusively on nonmuscular Myosin-II activation (Myo-II), indicating that other DRok targets are key in this process. We propose that DRok function in tendon cells is key to promote the establishment of MTJ attachment and to balance mechanical tension generated at the MTJ by muscle compaction.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Morfogénesis , Músculo Esquelético/metabolismo , Tendones/metabolismo , Quinasas Asociadas a rho/genética , Animales , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Cadenas beta de Integrinas/genética , Cadenas beta de Integrinas/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Tendones/crecimiento & desarrollo , Tórax/crecimiento & desarrollo , Trombospondinas/genética , Trombospondinas/metabolismo , Quinasas Asociadas a rho/metabolismo
17.
Sci Rep ; 6: 32132, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27573697

RESUMEN

The DLG-MAGUK subfamily of proteins plays a role on the recycling and clustering of glutamate receptors (GLUR) at the postsynaptic density. discs-large1 (dlg) is the only DLG-MAGUK gene in Drosophila and originates two main products, DLGA and DLGS97 which differ by the presence of an L27 domain. Combining electrophysiology, immunostaining and genetic manipulation at the pre and postsynaptic compartments we study the DLG contribution to the basal synaptic-function at the Drosophila larval neuromuscular junction. Our results reveal a specific function of DLGS97 in the regulation of the size of GLUR fields and their subunit composition. Strikingly the absence of any of DLG proteins at the presynaptic terminal disrupts the clustering and localization of the calcium channel DmCa1A subunit (Cacophony), decreases the action potential-evoked release probability and alters short-term plasticity. Our results show for the first time a crucial role of DLG proteins in the presynaptic function in vivo.


Asunto(s)
Potenciales de Acción/fisiología , Canales de Calcio/metabolismo , Proteínas de Drosophila/metabolismo , Sinapsis/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Canales de Calcio/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Sinapsis/genética , Proteínas Supresoras de Tumor/genética
18.
J Neurosci ; 22(19): 8347-51, 2002 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-12351707

RESUMEN

The ability of neurons to fire rapid action potential relies on the expression of voltage-gated sodium channels; the onset of the transcription of genes that encode these channels occurs during early neuronal development. The factors that direct and regulate the specific expression of ion channels are not well understood. Repressor element-1 silencing transcription/neuron-restrictive silencer factor (REST/NRSF) is a transcriptional regulator characterized as a repressor of the expression of NaV1.2, the gene encoding the voltage-gated sodium channel most abundantly expressed in the CNS, as well as of the expression of numerous other neuronal genes. In mammals, REST/NRSF is expressed mostly in non-neural cell types and immature neurons, and it is downregulated on neural maturation. To understand the mechanisms that govern sodium channel gene transcription and to explore the role of REST/NRSF in vivo, we inhibited REST/NRSF action in developing Xenopus laevis embryos by means of a dominant negative protein or antisense oligonucleotides. Contrary to what was expected, these maneuvers result in the decrease of the expression of the NaV1.2 gene, as well as of other neuronal genes in the primary spinal neurons and cranial ganglia, without overt perturbation of neurogenesis. These results, together with the demonstration of robust REST/NRSF expression in primary spinal neurons, suggest that REST/NRSF is required for the acquisition of the differentiated functional neuronal phenotype during early development. Furthermore, they suggest that REST/NRSF may be used to activate or repress transcription of neuronal genes in distinct cellular and developmental contexts.


Asunto(s)
Neuronas/metabolismo , Proteínas Represoras/metabolismo , Canales de Sodio/biosíntesis , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Ensayo de Cambio de Movilidad Electroforética , Embrión no Mamífero , Silenciador del Gen/fisiología , Genes Dominantes , Hibridación in Situ , Canal de Sodio Activado por Voltaje NAV1.2 , Proteínas del Tejido Nervioso/metabolismo , Cresta Neural/citología , Cresta Neural/embriología , Cresta Neural/metabolismo , Neuronas/citología , Oligonucleótidos Antisentido/farmacología , Fenotipo , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Canales de Sodio/metabolismo , Médula Espinal/citología , Médula Espinal/embriología , Médula Espinal/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Xenopus laevis
19.
J Neurosci ; 23(6): 2093-101, 2003 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-12657668

RESUMEN

Drosophila discs-large (dlg) mutants exhibit multiple developmental abnormalities, including severe defects in neuronal differentiation and synaptic structure and function. These defects have been ascribed to the loss of a single gene product, Dlg-A, a scaffold protein thought to be expressed in many cell types. Here, we describe that additional isoforms arise as a consequence of different transcription start points and alternative splicing of dlg. At least five different dlg gene products are predicted. We identified a subset of dlg-derived cDNAs that include novel exons encoding a peptide homologous to the N terminus of the mammalian protein SAP97/hDLG (S97N). Dlg isoforms containing the S97N domain are expressed at larval neuromuscular junctions and within the CNS of both embryos and larvae but are not detectable in epithelial tissues. Strong hypomorphic dlg alleles exhibit decreased expression of S97N, which may account for neural-specific aspects of the pleiomorphic dlg mutant phenotype. Selective inhibition of the expression of S97N-containing proteins in embryos by double-strand RNA leads to severe defects in neuronal differentiation and axon guidance, without overt perturbations in epithelia. These results indicate that the differential expression of dlg products correlates with distinct functions in non-neural and neural cells. During embryonic development, proteins that include the S97N domain are essential for proper neuronal differentiation and organization, acting through mechanisms that may include the adequate localization of cell fate determinants.


Asunto(s)
Proteínas de Drosophila , Proteínas de Insectos/fisiología , Neuronas/metabolismo , Proteínas Supresoras de Tumor/fisiología , Empalme Alternativo , Animales , Diferenciación Celular/fisiología , Sistema Nervioso Central/embriología , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/fisiología , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Drosophila , Embrión no Mamífero/inervación , Exones/fisiología , Etiquetas de Secuencia Expresada , Regulación del Desarrollo de la Expresión Génica/fisiología , Inmunohistoquímica , Proteínas de Insectos/genética , Larva , Proteínas del Tejido Nervioso/genética , Unión Neuromuscular/metabolismo , Unión Neuromuscular/ultraestructura , Neuronas/citología , Neurópilo/citología , Neurópilo/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Estructura Terciaria de Proteína/fisiología , ARN Bicatenario/farmacología , Proteínas Supresoras de Tumor/genética
20.
Dev Neurobiol ; 75(9): 1018-32, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25652545

RESUMEN

During axon targeting, a stereotyped pattern of connectivity is achieved by the integration of intrinsic genetic programs and the response to extrinsic long and short-range directional cues. How this coordination occurs is the subject of intense study. Transcription factors play a central role due to their ability to regulate the expression of multiple genes required to sense and respond to these cues during development. Here we show that the transcription factor HNT regulates layer-specific photoreceptor axon targeting in Drosophila through transcriptional control of jbug/Filamin and multiple genes involved in axon guidance and cytoskeleton organization.Using a microarray analysis we identified 235 genes whose expression levels were changed by HNT overexpression in the eye primordia. We analyzed nine candidate genes involved in cytoskeleton regulation and axon guidance, six of which displayed significantly altered gene expression levels in hnt mutant retinas. Functional analysis confirmed the role of OTK/PTK7 in photoreceptor axon targeting and uncovered Tiggrin, an integrin ligand, and Jbug/Filamin, a conserved actin- binding protein, as new factors that participate of photoreceptor axon targeting. Moreover, we provided in silico and molecular evidence that supports jbug/Filamin as a direct transcriptional target of HNT and that HNT acts partially through Jbug/Filamin in vivo to regulate axon guidance. Our work broadens the understanding of how HNT regulates the coordinated expression of a group of genes to achieve the correct connectivity pattern in the Drosophila visual system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1018-1032, 2015.


Asunto(s)
Axones/fisiología , Movimiento Celular/fisiología , Proteínas de Drosophila/metabolismo , Filaminas/metabolismo , Proteínas Nucleares/metabolismo , Células Fotorreceptoras de Invertebrados/fisiología , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular , Citoesqueleto/metabolismo , Drosophila , Proteínas de la Matriz Extracelular/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Retina/crecimiento & desarrollo , Retina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA