Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Naturwissenschaften ; 111(4): 36, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951264

RESUMEN

Gut microbial communities are part of the regulatory array of various processes within their hosts, ranging from nutrition to pathogen control. Recent evidence shows that dung beetle's gut microbial communities release substances with antifungal activity. Because of the enormous diversity of gut microorganisms in dung beetles, there is a possibility of discovering novel compounds with antifungal properties. We tested the antifungal activity mediated by gut microbial communities of female dung beetles against nine phytopathogenic fungi strains (Colletotrichum asianum-339, C. asianum-340, C. asianum-1, C. kahawae-390, C. karstii-358, C. siamense-220, Fusarium oxysporum-ATCC338, Nectria pseudotrichia-232, Verticillium zaelandica-22). Our tests included the gut microbial communities of three species of dung beetles: Canthon cyanellus (roller beetle), Digitonthophagus gazella (burrower beetle), and Onthophagus batesi (burrower beetle), and we followed the dual confrontation protocol, i.e., we challenged each fungal strain with the microbial communities of each species of beetles in Petri dishes containing culture medium. Our results showed that gut microbial communities of the three dung beetle species exhibit antifungal activity against at least seven of the nine phytopathogenic fungal strains. The gut microbial communities of Onthophagus batesi significantly decreased the mycelial growth of the nine phytopathogenic fungi strains; the gut microbial communities of Canthon cyanellus and Digitonthophagus gazella significantly reduced the mycelial growth of seven strains. These results provide a basis for investigating novel antifungal substances within gut microbial communities of dung beetles.


Asunto(s)
Antifúngicos , Escarabajos , Hongos , Microbioma Gastrointestinal , Animales , Escarabajos/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Antifúngicos/farmacología , Hongos/efectos de los fármacos , Femenino
2.
Chemistry ; 27(2): 618-621, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33169452

RESUMEN

An aminocatalytic privileged diversity-oriented synthesis (ApDOS) strategy utilizing trienamine catalysis for the construction of diverse and complex thiopyrans-piperidone fused rings through a thia-Diels-Alder/nucleophilic ring-closing sequence by using dithioamides as activated heterodienophiles is reported. Following this strategy, a super cascade reaction to assemble nine fused rings can be achieved by employing a bis-dithioamide. Additionally, by linking an indole moiety on the dithioamide, a Pictet-Spengler type reaction can be promoted once the cascade sequence has been achieved, leading to more complex penta- hexa- and heptacyclic fused ring derivatives in a one-pot process. This investigation opens new perspectives for the synthesis of a new class of complex and diverse thiopyrans that contribute to populate new relevant regions in the chemical space.

3.
Molecules ; 26(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34361771

RESUMEN

Herein, we report a novel type of symmetrical trithiocarbonate chain transfer agent (CTA) based diphenylmethyl as R groups. The utilization of this CTA in the Reversible Addition-Fragmentation chain Transfer (RAFT) process reveals an efficient control in the polymerization of methacrylic monomers and the preparation of block copolymers. The latter are obtained by the (co)polymerization of styrene or butyl acrylate using a functionalized macro-CTA polymethyl methacrylate (PMMA) previously synthesized. Data show low molecular weight dispersity values (D < 1.5) particularly in the polymerization of methacrylic monomers. Considering a typical RAFT mechanism, the leaving groups (R) from the fragmentation of CTA should be able to re-initiate the polymerization (formation of growth chains) allowing an efficient control of the process. Nevertheless, in the case of the polymerization of MMA in the presence of this symmetrical CTA, the polymerization process displays an atypical behavior that requires high [initiator]/[CTA] molar ratios for accessing predictable molecular weights without affecting the D. Some evidence suggests that this does not completely behave as a common RAFT agent as it is not completely consumed during the polymerization reaction, and it needs atypical high molar ratios [initiator]/[CTA] to be closer to the predicted molecular weight without affecting the D. This work demonstrates that MMA and other methacrylic monomers can be polymerized in a controlled way, and with "living" characteristics, using certain symmetrical trithiocarbonates.

4.
Bioorg Med Chem Lett ; 30(9): 127063, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32139323

RESUMEN

The first study about the anxiolytic activity of two chiral tetrahydrocarbazoles is presented. This new chiral compounds were prepared through an organocatalytic strategy via trienamine activation. The in situ ortho-quinodimethane species, formed by the condensation of the N-protected 2-methylindole acrylaldehyde with a sterically hindred diarylsilylprolinol ether derivative as catalyst, easily participate in a Diels-Alder reaction with the ethyl cyanophenyl acrylate as dienophile, in good yields and excellent stereoselectivity. These compounds showed activity against anxiety and mood disorders that can possibly contribute in the discovery of new drugs. In addition, the use of N-protected 2-methylindole acrylaldehyde will set a new base for the synthesis of medically and pharmacologically important tetrahydrocarbazoles via trienamine catalysis.


Asunto(s)
Ansiolíticos/síntesis química , Ansiolíticos/farmacología , Carbazoles/síntesis química , Carbazoles/farmacología , Animales , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Relación Estructura-Actividad
5.
BMC Plant Biol ; 16(1): 177, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27527830

RESUMEN

BACKGROUND: Calophyllum brasiliense is highlighted as an important resource of calanolides, which are dipyranocoumarins that inhibit the reverse transcriptase of human immunodeficiency virus type 1 (HIV-1 RT). Despite having great medicinal importance, enzymes involved in calanolide, biosynthesis and the pathway itself, are still largely unknown. Additionally, no genomic resources exist for this plant species. RESULTS: In this work, we first analyzed the transcriptome of C. brasiliense leaves, stem, and roots using a RNA-seq strategy, which provided a dataset for functional gene mining. According to the structures of the calanolides, putative biosynthetic pathways were proposed. Finally, candidate unigenes in the transcriptome dataset, potentially involved in umbelliferone and calanolide (angular pyranocoumarin) biosynthetic pathways, were screened using mainly homology-based BLAST and phylogenetic analyses. CONCLUSIONS: The unigene dataset that was generated in this study provides an important resource for further molecular studies of C. brasiliense, especially for functional analysis of candidate genes involved in the biosynthetic pathways of linear and angular pyranocoumarins.


Asunto(s)
Calophyllum/genética , Proteínas de Plantas/genética , Piranocumarinas/metabolismo , Calophyllum/clasificación , Calophyllum/metabolismo , Perfilación de la Expresión Génica , Filogenia , Proteínas de Plantas/metabolismo , Transcriptoma
6.
BMC Genomics ; 16: 657, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26330142

RESUMEN

BACKGROUND: Lophophora williamsii (commonly named peyote) is a small, spineless cactus with psychoactive alkaloids, particularly mescaline. Peyote utilizes crassulacean acid metabolism (CAM), an alternative form of photosynthesis that exists in succulents such as cacti and other desert plants. Therefore, its transcriptome can be considered an important resource for future research focused on understanding how these plants make more efficient use of water in marginal environments and also for research focused on better understanding of the overall mechanisms leading to production of plant natural products and secondary metabolites. RESULTS: In this study, two cDNA libraries were generated from L. williamsii. These libraries, representing buttons (tops of stems) and roots were sequenced using different sequencing platforms (GS-FLX, GS-Junior and PGM, respectively). A total of 5,541,550 raw reads were generated, which were assembled into 63,704 unigenes with an average length of 564.04 bp. A total of 25,149 unigenes (62.19 %) was annotated using public databases. 681 unigenes were found to be differentially expressed when comparing the two libraries, where 400 were preferentially expressed in buttons and 281 in roots. Some of the major alkaloids, including mescaline, were identified by GC-MS and relevant metabolic pathways were reconstructed using the Kyoto encyclopedia of genes and genomes database (KEGG). Subsequently, the expression patterns of preferentially expressed genes putatively involved in mescaline production were examined and validated by qRT-PCR. CONCLUSIONS: High throughput transcriptome sequencing (RNA-seq) analysis allowed us to efficiently identify candidate genes involved in mescaline biosynthetic pathway in L. williamsii; these included tyrosine/DOPA decarboxylase, hydroxylases, and O-methyltransferases. This study sets the theoretical foundation for bioassay design directed at confirming the participation of these genes in mescaline production.


Asunto(s)
Genes de Plantas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mescalina/biosíntesis , Sophora/genética , Transcriptoma/genética , Vías Biosintéticas/genética , Descarboxilación , Dihidroxifenilalanina/metabolismo , Hidroxilación , Funciones de Verosimilitud , Mescalina/química , Metiltransferasas/metabolismo , Anotación de Secuencia Molecular , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Sophora/enzimología , Tirosina/metabolismo
7.
ACS Omega ; 9(26): 29035-29040, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38973892

RESUMEN

This study investigates the enantioselectivity challenges of asymmetric cyanation reactions using TADDOL derivatives as chiral ligands, specifically focusing on the cyanosilylation of aldehydes and the cyanation of imines. Despite extensive optimization efforts, the highest achieved ee was only modest, peaking at 71% for the cyanosilylation reaction, while the cyanation of imines consistently resulted in racemic mixtures. Our comprehensive analysis, supported by experimental data and computational modeling, reveals significant barriers to enhancing the enantioselectivity. The results highlight a complex interplay between ligand structure and reaction conditions, demonstrating that even promising ligands such as TADDOL derivatives face substantial challenges in these reaction types. This study underscores the importance of understanding the mechanistic details through computational insights to guide future improvements in asymmetric catalysis.

8.
RSC Adv ; 14(25): 17710-17723, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38832247

RESUMEN

Antimicrobial resistance (AMR) represents a critical challenge worldwide, necessitating the pursuit of novel approaches to counteract bacterial and fungal pathogens. In this context, we explored the potential of cationic amino acid-enriched short peptides, synthesized via solid-phase methods, as innovative antimicrobial candidates. Our comprehensive evaluation assessed the antibacterial and antifungal efficacy of these peptides against a panel of significant pathogens, including Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogenes, Candida albicans, and Aspergillus niger. Utilizing molecular docking techniques, we delved into the molecular interactions underpinning the peptides' action against these microorganisms. The results revealed a spectrum of inhibitory activities, with certain peptide sequences displaying pronounced effectiveness across various pathogens. These findings underscore the peptides' potential as promising antimicrobial agents, with molecular docking offering valuable insights into their mechanisms of action. This study enriches antimicrobial peptide (AMP) research by identifying promising candidates for further refinement and development toward therapeutic application, highlighting their significance in addressing the urgent issue of AMR.

9.
J Am Chem Soc ; 135(9): 3411-3, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23406082

RESUMEN

An efficient and versatile method for the enantioselective epoxidation of both tertiary allylic and homoallylic alcohols catalyzed by Hf(IV)-bishydroxamic acid (BHA) complexes is described. Asymmetric epoxidation, kinetic resolution, and desymmetrization have been developed, demonstrating the flexible nature of the Hf(IV)-BHA system. This is the first report in which these substrates were obtained with enantioselectivities of up to 99%.


Asunto(s)
Compuestos Epoxi/síntesis química , Propanoles/química , Catálisis , Compuestos Epoxi/química , Estructura Molecular , Estereoisomerismo
10.
Pest Manag Sci ; 79(5): 1912-1921, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36656155

RESUMEN

BACKGROUND: The amino acids R- and S-proline were used to synthesize novel neonicotinoid derivatives that, after being characterized by 1 H, DEPTQ 135, and HRMS-QTOF, were evaluated for use as insecticides against Galleria mellonella (caterpillar), Sitophilus zeamais, Xylosandrus morigerus, Xyleborus affinis, and Xyleborus ferrugineus. RESULTS: Comparisons of biological activity and absolute configuration showed that the R enantiomer had excellent and outstanding insecticidal activity against the insects tested, with up to 100% mortality after 12 h compared with dinotefuran at the same concentration. CONCLUSIONS: The results suggest that compound R6 is an excellent lead enantiopure insecticide for future development in the field of crop protection. Furthermore, intermolecular interactions between nicotinic acetylcholine receptors and the R enantiomer displays a lower score which mean a higher affinity to the nAChR receptor and the π-π interactions are more stable than the S derivative. © 2023 Society of Chemical Industry.


Asunto(s)
Insecticidas , Receptores Nicotínicos , Animales , Insecticidas/química , Prolina , Neonicotinoides/química , Insectos/metabolismo , Receptores Nicotínicos/metabolismo
11.
J Am Chem Soc ; 134(12): 5440-3, 2012 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-22420598

RESUMEN

Asymmetric epoxidation of allylic and homoallylic amine derivatives catalyzed by Hf(IV)-bishydroxamic acid complexes is described. Under similar conditions, aldimine and ketimine produced oxaziridines. The sulfonyl group is demonstrated to be an effective directing group for these transformations.


Asunto(s)
Aminas/química , Compuestos Epoxi/química , Hafnio/química , Ácidos Hidroxámicos/química , Iminas/química , Sulfonamidas/química , Aziridinas/síntesis química , Catálisis , Estereoisomerismo
12.
Polymers (Basel) ; 14(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36146056

RESUMEN

Polyaniline (PANI) composites have gained momentum as supercapacitive materials due to their high energy density and power density. However, some drawbacks in their performance remain, such as the low stability after hundreds of charge-discharge cycles and limitations in the synthesis scalability. Herein, we report for the first time PANI-Graphitic oxidized carbon nitride composites as potential supercapacitor material. The biomimetic polymerization of aniline assisted by hematin, supported by phosphorous and oxygen-modified carbon nitrides (g-POCN and g-OCN, respectively), achieved up to 89% yield. The obtained PAI/g-POCN and PANI/g-OCN show enhanced electrochemical properties, such as conductivity of up to 0.0375 S/cm, specific capacitances (Cs) of up to 294 F/g (at high current densities, 5 A/g) and a stable operation after 500 charge-discharge cycles (at 3 A/g). In contrast, the biomimetic synthesis of Free PANI, assisted by stabilized hematin in cosolvents, exhibited lower performance properties (65%). Due to their structural differences, the electrochemical properties of Free PANI (conductivity of 0.0045 S/cm and Cs of up to 82 F/g at 5 A/g) were lower than those of nanostructured PANI/g-POCN and g-OCN supports, which provide stability and improve the properties of biomimetically synthesized PANI. This work reveals the biomimetic synthesis of PANI, assisted by hematin supported by modified carbon nitrides, as a promising strategy to produce nanostructured supercapacitors with high performance.

13.
J Agric Food Chem ; 69(5): 1455-1465, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33497218

RESUMEN

In this research, six neonicotinoid analogs derived from l-proline were synthesized, characterized, and evaluated as insecticides against Xyleborus affinis. Most of the target compounds showed good to excellent insecticidal activity. To the best of our knowledge, this is the first report dealing with the use of enantiopure l-proline to get neonicotinoids. These results highlighted the compound 9 as an excellent candidate used as the lead chiral insecticide for future development. Additionally, molecular docking with the receptor and compound 9 was carried out to gain insight into its high activity when compared to dinotefuran. Finally, the neurotoxic evaluation of compound 9 showed lower toxicity than the classic neonicotinoid dinotefuran.


Asunto(s)
Insecticidas/síntesis química , Neonicotinoides/síntesis química , Prolina/química , Animales , Escarabajos/efectos de los fármacos , Escarabajos/crecimiento & desarrollo , Insecticidas/química , Insecticidas/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Neonicotinoides/química , Neonicotinoides/farmacología
14.
RSC Adv ; 10(60): 36539-36545, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35517954

RESUMEN

Towards the development of eco-friendly alternatives of elastomeric materials, which can replace petroleum-based materials, it is crucial to explore different monomers and catalytic systems in order to find the best possible combinations for specific applications. Herein, we report the synthesis of polyocimene via coordination polymerization using two different neodymium-based catalysts (NdV3 and Nd(Oi-Pr)3), activated by alkylaluminums/organoboron compounds. By varying the type of co-catalyst species, halide donors, and reaction parameters, we have demonstrated the possibility to obtain polymers with a controlled microstructure and tunable properties, in terms of molecular weight characteristics and kinetics. Our results provide important insights towards the search for the optimum catalytic system to produce bio-elastomers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA