Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuropediatrics ; 45(5): 336-40, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25062271

RESUMEN

Rasmussen encephalitis (RE) is a severe epileptic and inflammatory encephalopathy of unknown etiology, responsible for focal neurological signs and cognitive decline. The current leading hypothesis suggests a sequence of immune reactions induced by an indeterminate factor. This sequence is thought to be responsible for the production of autoantibody-mediated central nervous system degeneration. However, these autoantibodies are not specific to the disease and not all patients present with them. We report the case of a 4-year-old girl suffering from RE displaying some atypical features such as fast evolution and seizures of left parietal onset refractory to several antiepileptics, intravenous immunoglobulins, and corticosteroids. Serum autoantibodies directed against voltage-gated potassium channels (VGKC) were evidenced at 739 pM, a finding never previously reported in children. This screening was performed because of an increased signal in the temporolimbic areas on brain magnetic resonance imaging, which was similar to what is observed during limbic encephalitis. The patient experienced epilepsia partialis continua with progressive right hemiplegia and aphasia. She underwent left hemispherotomy at the age of 5.5 years after which she became seizure free with great cognitive improvement. First described in adults, VGKC autoantibodies have been recently described in children with various neurological manifestations. The implication of VGKC autoantibodies in RE is a new observation and opens up new physiopathological and therapeutic avenues of investigation.


Asunto(s)
Autoanticuerpos/sangre , Encefalitis/sangre , Canales de Potasio con Entrada de Voltaje/inmunología , Encéfalo/patología , Encéfalo/fisiopatología , Preescolar , Electroencefalografía , Encefalitis/diagnóstico , Femenino , Humanos , Imagen por Resonancia Magnética
2.
Ann Neurol ; 66(2): 209-18, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19743469

RESUMEN

OBJECTIVE: The mechanisms of epileptogenesis in Sturge-Weber syndrome (SWS) are unknown. We explored the properties of neurons from human pediatric SWS cortex in vitro and tested in particular whether gamma-aminobutyric acid (GABA) excites neurons in SWS cortex, as has been suggested for various types of epilepsies. METHODS: Patch-clamp and field potential recordings and dynamic biphoton imaging were used to analyze cortical tissue samples obtained from four 6- to 14-month-old pediatric SWS patients during surgery. RESULTS: Neurons in SWS cortex were characterized by a relatively depolarized resting membrane potential, as was estimated from cell-attached recordings of N-methyl-D-aspartate channels. Many cells spontaneously fired action potentials at a rate proportional to the level of neuronal depolarization. The reversal potential for GABA-activated currents, assessed by cell-attached single channel recordings, was close to the resting membrane potential. All spontaneously firing neurons recorded in cell-attached mode or imaged with biphoton microscopy were inhibited by GABA. Spontaneous epileptiform activity in the form of recurrent population bursts was suppressed by glutamate receptor antagonists, the GABA(A) receptor agonist isoguvacine, and the positive allosteric GABA(A) modulator diazepam. Blockade of GABA(A) receptors aggravated spontaneous epileptiform activity. The NKCC1 antagonist bumetanide had little effect on epileptiform activity. INTERPRETATION: SWS cortical neurons have a relatively depolarized resting membrane potential and spontaneously fire action potentials that may contribute to increased network excitability. In contrast to previous data depicting excitatory and proconvulsive actions of GABA in certain pediatric and adult epilepsies, GABA plays mainly an inhibitory and anticonvulsive role in SWS pediatric cortex.


Asunto(s)
Corteza Cerebral/fisiopatología , Inhibición Neural/fisiología , Neuronas/fisiología , Síndrome de Sturge-Weber/fisiopatología , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Bumetanida/farmacología , Corteza Cerebral/efectos de los fármacos , Diazepam/farmacología , Epilepsia/tratamiento farmacológico , Epilepsia/fisiopatología , Antagonistas de Aminoácidos Excitadores/farmacología , Agonistas del GABA/farmacología , Moduladores del GABA/farmacología , Agonistas de Receptores de GABA-A , Humanos , Técnicas In Vitro , Lactante , Ácidos Isonicotínicos/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptores de GABA-A/metabolismo , Receptores de Glutamato/metabolismo , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Miembro 2 de la Familia de Transportadores de Soluto 12
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA