Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Nat Prod ; 84(8): 2282-2294, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34264084

RESUMEN

Acute lung injury (ALI) is an important public health problem. The present work investigated whether dehydrodieugenol B treatment, a compound isolated from Brazilian plant Nectandra leucantha (Lauraceae), modulates experimental ALI and compared the observed effects to eugenol. Effects of dehydrodieugenol B in vitro in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were evaluated. The lung and systemic inflammatory profile, lung function, and possible mechanisms involved in BALB/C male mice (6-8 weeks) with ALI induced by LPS instillation (5 mg/kg) was assayed. Dehydrodieugenol B did not affect the cell viability and inhibited the increase in NO release and IL-1ß and IL-6 gene expression induced by LPS. In vivo, both compounds reduced lung edema, inflammatory cells, and the IL-6 and IL-1 ß levels in bronchoalveolar lavage fluid, as well as reduced inflammatory cell infiltration and those positive to iNOS, MMP-9, and TIMP-1, and reduced the collagen content and the 8-isoprostane expression in lung tissue. Eugenol and dehydrodieugenol B also inhibited the phosphorylation of Jc-Jun-NH2 terminal Kinase (JNK), a signaling protein involved in the MAPKinase pathway. There was no effect of these compounds in lung function. Therefore, eugenol and dehydrodieugenol B ameliorates several features of experimental ALI and could be considered as a pharmacological tool to ameliorate acute lung inflammation.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Anisoles/farmacología , Eugenol/farmacología , Lauraceae/química , Neumonía/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Animales , Brasil , Lipopolisacáridos , Masculino , Ratones , Ratones Endogámicos BALB C , Fitoquímicos/farmacología , Hojas de la Planta/química , Neumonía/inducido químicamente , Células RAW 264.7
2.
Molecules ; 25(22)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33217892

RESUMEN

In the present work, the anti-inflammatory and antiasthmatic potential of biseugenol, isolated as the main component from n-hexane extract from leaves of Nectandra leucantha and chemically prepared using oxidative coupling from eugenol, was evaluated in an experimental model of mixed-granulocytic asthma. Initially, in silico studies of biseugenol showed good predictions for drug-likeness, with adherence to Lipinski's rules of five (RO5), good Absorption, Distribution, Metabolism and Excretion (ADME) properties and no alerts for Pan-Assay Interference Compounds (PAINS), indicating adequate adherence to perform in vivo assays. Biseugenol (20 mg·kg-1) was thus administered intraperitoneally (four days of treatment) and resulted in a significant reduction in both eosinophils and neutrophils of bronchoalveolar lavage fluid in ovalbumin-sensitized mice with no statistical difference from dexamethasone (5 mg·kg-1). As for lung function parameters, biseugenol (20 mg·kg-1) significantly reduced airway and tissue damping in comparison to ovalbumin group, with similar efficacy to positive control dexamethasone. Airway hyperresponsiveness to intravenous methacholine was reduced with biseugenol but was inferior to dexamethasone in higher doses. In conclusion, biseugenol displayed antiasthmatic effects, as observed through the reduction of inflammation and airway hyperresponsiveness, with similar effects to dexamethasone, on mixed-granulocytic ovalbumin-sensitized mice.


Asunto(s)
Antiasmáticos/uso terapéutico , Antiinflamatorios/uso terapéutico , Asma/tratamiento farmacológico , Granulocitos/patología , Éteres Fenílicos/farmacología , Animales , Antiasmáticos/química , Antiasmáticos/farmacología , Antiinflamatorios/farmacología , Asma/complicaciones , Asma/fisiopatología , Disponibilidad Biológica , Compuestos de Bifenilo/química , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/uso terapéutico , Simulación por Computador , Modelos Animales de Enfermedad , Granulocitos/efectos de los fármacos , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Lignanos/química , Lignanos/farmacología , Lignanos/uso terapéutico , Modelos Lineales , Masculino , Ratones Endogámicos BALB C , Éteres Fenílicos/química , Éteres Fenílicos/uso terapéutico , Pruebas de Función Respiratoria , Hipersensibilidad Respiratoria/complicaciones , Hipersensibilidad Respiratoria/tratamiento farmacológico , Hipersensibilidad Respiratoria/fisiopatología
3.
Molecules ; 21(10)2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27775634

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by irreversible airflow obstruction and inflammation. Natural products, such as monoterpenes, displayed anti-inflammatory and anti-oxidant activities and can be used as a source of new compounds to COPD treatment. Our aim was to evaluate, in an elastase-induced pulmonary emphysema in mice, the effects of and underlying mechanisms of three related natural monoterpenes (p-cymene, carvacrol and thymol) isolated from essential oil from leaves Lippia sidoides Cham. (Verbenaceae). METHODS: Mices received porcine pancreatic elastase (PPE) and were treated with p-cymene, carvacrol, thymol or vehicle 30 min later and again on 7th, 14th and 28th days. Lung inflammatory profile and histological sections were evaluated. RESULTS: In the elastase-instilled animals, the tested monoterpenes reduced alveolar enlargement, macrophages and the levels of IL-1ß, IL-6, IL-8 and IL-17 in bronchoalveolar lavage fluid (BALF), and collagen fibers, MMP-9 and p-65-NF-κB-positive cells in lung parenchyma (p < 0.05). All treatments attenuated levels of 8-iso-PGF2α but only thymol was able to reduced exhaled nitric oxide (p < 0.05). CONCLUSION: Monoterpenes p-cymene, carvacrol and thymol reduced lung emphysema and inflammation in mice. No significant differences among the three monoterpenes treatments were found, suggesting that the presence of hydroxyl group in the molecular structure of thymol and carvacrol do not play a central role in the anti-inflammatory effects.


Asunto(s)
Enfisema/tratamiento farmacológico , Interleucinas/metabolismo , Lippia/química , Monoterpenos/administración & dosificación , Elastasa Pancreática/efectos adversos , Animales , Líquido del Lavado Bronquioalveolar/inmunología , Cimenos , Modelos Animales de Enfermedad , Enfisema/inducido químicamente , Enfisema/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Ratones , Monoterpenos/química , Monoterpenos/aislamiento & purificación , Monoterpenos/farmacología , Aceites Volátiles/química , Hojas de la Planta/química , Timol/administración & dosificación , Timol/química , Timol/aislamiento & purificación , Timol/farmacología
4.
Respir Res ; 16: 79, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26122092

RESUMEN

BACKGROUND: Pulmonary emphysema is characterized by irreversible airflow obstruction, inflammation, oxidative stress imbalance and lung remodeling, resulting in reduced lung function and a lower quality of life. Flavonoids are plant compounds with potential anti-inflammatory and antioxidant effects that have been used in folk medicine. Our aim was to determine whether treatment with sakuranetin, a flavonoid extracted from the aerial parts of Baccharis retusa, interferes with the development of lung emphysema. METHODS: Intranasal saline or elastase was administered to mice; the animals were then treated with sakuranetin or vehicle 2 h later and again on days 7, 14 and 28. We evaluated lung function and the inflammatory profile in bronchoalveolar lavage fluid (BALF). The lungs were removed to evaluate alveolar enlargement, extracellular matrix fibers and the expression of MMP-9, MMP-12, TIMP-1, 8-iso-PGF-2α and p65-NF-κB in the fixed tissues as well as to evaluate cytokine levels and p65-NF-κB protein expression. RESULTS: In the elastase-treated animals, sakuranetin treatment reduced the alveolar enlargement, collagen and elastic fiber deposition and the number of MMP-9- and MMP-12-positive cells but increased TIMP-1 expression. In addition, sakuranetin treatment decreased the inflammation and the levels of TNF-α, IL-1ß and M-CSF in the BALF as well as the levels of NF-κB and 8-iso-PGF-2α in the lungs of the elastase-treated animals. However, this treatment did not affect the changes in lung function. CONCLUSION: These data emphasize the importance of oxidative stress and metalloproteinase imbalance in the development of emphysema and suggest that sakuranetin is a potent candidate that should be further investigated as an emphysema treatment. This compound may be useful for counteracting lung remodeling and oxidative stress and thus attenuating the development of emphysema.


Asunto(s)
Baccharis , Flavonoides/uso terapéutico , Metaloproteinasas de la Matriz/biosíntesis , FN-kappa B/metabolismo , Estrés Oxidativo/fisiología , Enfisema Pulmonar/metabolismo , Animales , Flavanonas/aislamiento & purificación , Flavanonas/uso terapéutico , Flavonoides/aislamiento & purificación , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Elastasa Pancreática/toxicidad , Componentes Aéreos de las Plantas , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/prevención & control , Porcinos
5.
Inflammation ; 47(3): 958-974, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38227123

RESUMEN

Pulmonary emphysema is a primary component of chronic obstructive pulmonary disease (COPD), a life-threatening disorder characterized by lung inflammation and restricted airflow, primarily resulting from the destruction of small airways and alveolar walls. Cumulative evidence suggests that nicotinic receptors, especially the α7 subtype (α7nAChR), is required for anti-inflammatory cholinergic responses. We postulated that the stimulation of α7nAChR could offer therapeutic benefits in the context of pulmonary emphysema. To investigate this, we assessed the potential protective effects of PNU-282987, a selective α7nAChR agonist, using an experimental emphysema model. Male mice (C57BL/6) were submitted to a nasal instillation of porcine pancreatic elastase (PPE) (50 µl, 0.667 IU) to induce emphysema. Treatment with PNU-282987 (2.0 mg/kg, ip) was performed pre and post-emphysema induction by measuring anti-inflammatory effects (inflammatory cells, cytokines) as well as anti-remodeling and anti-oxidant effects. Elastase-induced emphysema led to an increase in the number of α7nAChR-positive cells in the lungs. Notably, both groups treated with PNU-282987 (prior to and following emphysema induction) exhibited a significant decrease in the number of α7nAChR-positive cells. Furthermore, both groups treated with PNU-282987 demonstrated decreased levels of macrophages, IL-6, IL-1ß, collagen, and elastic fiber deposition. Additionally, both groups exhibited reduced STAT3 phosphorylation and lower levels of SOCS3. Of particular note, in the post-treated group, PNU-282987 successfully attenuated alveolar enlargement, decreased IL-17 and TNF-α levels, and reduced the recruitment of polymorphonuclear cells to the lung parenchyma. Significantly, it is worth noting that MLA, an antagonist of α7nAChR, counteracted the protective effects of PNU-282987 in relation to certain crucial inflammatory parameters. In summary, these findings unequivocally demonstrate the protective abilities of α7nAChR against elastase-induced emphysema, strongly supporting α7nAChR as a pivotal therapeutic target for ameliorating pulmonary emphysema.


Asunto(s)
Benzamidas , Compuestos Bicíclicos con Puentes , Ratones Endogámicos C57BL , Agonistas Nicotínicos , Elastasa Pancreática , Enfisema Pulmonar , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Enfisema Pulmonar/tratamiento farmacológico , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/prevención & control , Ratones , Benzamidas/farmacología , Benzamidas/uso terapéutico , Masculino , Compuestos Bicíclicos con Puentes/farmacología , Compuestos Bicíclicos con Puentes/uso terapéutico , Agonistas Nicotínicos/farmacología , Agonistas Nicotínicos/uso terapéutico , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
6.
Sci Rep ; 11(1): 15918, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354132

RESUMEN

Acetylcholine (ACh), the neurotransmitter of the cholinergic system, regulates inflammation in several diseases including pulmonary diseases. ACh is also involved in a non-neuronal mechanism that modulates the innate immune response. Because inflammation and release of pro-inflammatory cytokines are involved in pulmonary emphysema, we hypothesized that vesicular acetylcholine transport protein (VAChT) deficiency, which leads to reduction in ACh release, can modulate lung inflammation in an experimental model of emphysema. Mice with genetical reduced expression of VAChT (VAChT KDHOM 70%) and wild-type mice (WT) received nasal instillation of 50 uL of porcine pancreatic elastase (PPE) or saline on day 0. Twenty-eight days after, animals were evaluated. Elastase instilled VAChT KDHOM mice presented an increase in macrophages, lymphocytes, and neutrophils in bronchoalveolar lavage fluid and MAC2-positive macrophages in lung tissue and peribronchovascular area that was comparable to that observed in WT mice. Conversely, elastase instilled VAChT KDHOM mice showed significantly larger number of NF-κB-positive cells and isoprostane staining in the peribronchovascular area when compared to elastase-instilled WT-mice. Moreover, elastase-instilled VAChT-deficient mice showed increased MCP-1 levels in the lungs. Other cytokines, extracellular matrix remodeling, alveolar enlargement, and lung function were not worse in elastase-instilled VAChT deficiency than in elastase-instilled WT-controls. These data suggest that decreased VAChT expression may contribute to the pathogenesis of emphysema, at least in part, through NF-κB activation, MCP-1, and oxidative stress pathways. This study highlights novel pathways involved in lung inflammation that may contribute to the development of chronic obstrutive lung disease (COPD) in cholinergic deficient individuals such as Alzheimer's disease patients.


Asunto(s)
Acetilcolina/deficiencia , Enfisema/inmunología , Neumonía/etiología , Acetilcolina/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/citología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Enfisema/metabolismo , Inflamación/patología , Pulmón/patología , Macrófagos/metabolismo , Masculino , Ratones , FN-kappa B/metabolismo , Neutrófilos/metabolismo , Elastasa Pancreática/efectos adversos , Elastasa Pancreática/farmacología , Neumonía/fisiopatología , Enfisema Pulmonar/metabolismo , Transducción de Señal , Proteínas de Transporte Vesicular de Acetilcolina/deficiencia , Proteínas de Transporte Vesicular de Acetilcolina/genética , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
8.
Appl Physiol Nutr Metab ; 45(9): 978-986, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32813570

RESUMEN

Cigarette smoke (CS) exposure reduces skeletal muscle function; however, the mechanisms involved have been poorly investigated. The current study evaluated the temporal effects of aerobic exercise training on oxidant and antioxidant systems as well as inflammatory markers in skeletal muscle of mice exposed to CS. Mice were randomly allocated to control, exercise, smoke, and smoke+exercise groups and 3 time points (4, 8, and 12 weeks; n = 12 per group). Exercise training and CS exposure were performed for 30 min/day, twice a day, 5 days/week for 4, 8, and 12 weeks. Aerobic exercise improved functional capacity and attenuated the increase in the cachexia index induced by CS exposure after 12 weeks. Concomitantly, exercise training downregulated tumor necrosis factor α concentration, glutathione oxidation, and messenger RNA (mRNA) expression of Keap1 (P < 0.01) and upregulated interleukin 10 concentration, total antioxidant capacity, and mRNA expression of Nrf2, Gsr, and Txn1 (P < 0.01) in muscle. Exercise increased mRNA expression of Hmox1 compared with the control after 12 weeks (P < 0.05). There were no significant differences between smoke groups for superoxide dismutase activity and Hmox1 mRNA expression. Exercise training improved the ability of skeletal muscle to adequately upregulate key antioxidant and anti-inflammatory defenses to detoxify electrophilic compounds induced by CS exposure, and these effects were more pronounced after 12 weeks. Novelty Exercise attenuates oxidative stress in skeletal muscle from animals exposed to CS via Nrf2 and glutathione pathways. Exercise is a helpful tool to control the inflammatory balance in skeletal muscle from animals exposed to CS. These beneficial effects were evident after 12 weeks.


Asunto(s)
Citocinas/metabolismo , Músculo Esquelético/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Condicionamiento Físico Animal , Humo/efectos adversos , Animales , Antioxidantes/metabolismo , Caquexia , Fumar Cigarrillos/efectos adversos , Glutatión/metabolismo , Interleucina-10/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Estrés Oxidativo , Superóxido Dismutasa/metabolismo
9.
Biochem Pharmacol ; 180: 114175, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32717226

RESUMEN

BACKGROUND: Eugenol, a common phenylpropanoid derivative found in different plant species, has well-described anti-inflammatory effects associated with the development of occupational hypersensitive asthma. Dehydrodieugenol, a dimeric eugenol derivative, exhibits anti-inflammatory and antioxidant activities and can be found in the Brazilian plant species Nectandra leucantha (Lauraceae). The biological effects of dehydrodieugenol on lung inflammation remain unclear. PURPOSE: This study aimed to investigate the effects of eugenol and dehydrodieugenol isolated from N. leucantha in an experimental model of asthma. METHODS: In the present work, the toxic effects of eugenol and dehydrodieugenol on RAW 264.7 cells and their oxidant and inflammatory effects before lipopolysaccharide (LPS) exposure were tested. Then, male BALB/c mice were sensitized with ovalbumin through a 29-day protocol and treated with vehicle, eugenol, dehydrodieugenol or dexamethasone for eight days beginning on the 22nd day until the end of the protocol. Lung function; the inflammatory profile; and the protein expression of ERK1/2, JNK, p38, VAChT, STAT3, and SOCS3 in the lung were evaluated by immunoblotting. RESULTS: Eugenol and dehydrodieugenol were nontoxic to cells. Both compounds inhibited NO release and the gene expression of IL-1ß and IL-6 in LPS-stimulated RAW 264.7 cells. In OVA-sensitized animals, dehydrodieugenol reduced lung inflammatory cell numbers and the lung concentrations of IL-4, IL-13, IL-17, and IL-10. These anti-inflammatory effects were associated with inhibition of the JNK, p38 and ERK1/2, VAChT and STAT3/SOCS3 pathways. Moreover, treatment with dehydrodieugenol effectively attenuated airway hyperresponsiveness. CONCLUSION: The obtained data demonstrate, for the first time, that dehydrodieugenol was more effective than eugenol in counteracting allergic airway inflammation in mice, especially its inhibition of the JNK, p38 and ERK1/2, components of MAPK pathway. Therefore, dehydrodieugenol can be considered a prototype for the development of new and effective agents for the treatment of asthmatic patients.


Asunto(s)
Asma/tratamiento farmacológico , Eugenol/análogos & derivados , Lignanos/uso terapéutico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neumonía/tratamiento farmacológico , Factor de Transcripción STAT3/antagonistas & inhibidores , Proteína 3 Supresora de la Señalización de Citocinas/antagonistas & inhibidores , Animales , Asma/metabolismo , Relación Dosis-Respuesta a Droga , Eugenol/aislamiento & purificación , Eugenol/farmacología , Eugenol/uso terapéutico , Lauraceae , Lignanos/aislamiento & purificación , Lignanos/farmacología , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Neumonía/metabolismo , Células RAW 264.7 , Factor de Transcripción STAT3/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo
10.
Sci Rep ; 9(1): 1921, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760822

RESUMEN

We proposed an experimental model to verify the Th17/Treg cytokine imbalance in COPD exacerbation. Forty C57BL/6 mice were exposed to room air or cigarette smoke (CS) (12 ± 1 cigarettes, twice a day, 30 min/exposure and 5 days/week) and received saline (50 µl) or lipopolysaccharide (LPS) (1 mg/kg in 50 µl of saline) intratracheal instillations. We analyzed the mean linear intercept, epithelial thickness and inflammatory profiles of the bronchoalveolar lavage fluid and lungs. We evaluated macrophages, neutrophils, CD4+ and CD8+ T cells, Treg cells, and IL-10+ and IL-17+ cells, as well as STAT-3, STAT-5, phospho-STAT3 and phospho-STAT5 levels using immunohistochemistry and IL-17, IL-6, IL-10, INF-γ, CXCL1 and CXCL2 levels using ELISA. The study showed that CS exposure and LPS challenge increased the numbers of neutrophils, macrophages, and CD4+ and CD8+ T cells. Simultaneous exposure to CS/LPS intensified this response and lung parenchymal damage. The densities of Tregs and IL-17+ cells and levels of IL-17 and IL-6 were increased in both LPS groups, while IL-10 level was only increased in the Control/LPS group. The increased numbers of STAT-3, phospho-STAT3, STAT-5 and phospho-STAT5+ cells corroborated the increased numbers of IL-17+ and Treg cells. These findings point to simultaneous challenge with CS and LPS exacerbated the inflammatory response and induced diffuse structural changes in the alveolar parenchyma characterized by an increase in Th17 cytokine release. Although the Treg cell differentiation was observed, the lack of IL-10 expression and the decrease in the density of IL-10+ cells observed in the CS/LPS group suggest that a failure to release this cytokine plays a pivotal role in the exacerbated inflammatory response in this proposed model.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Fumar Cigarrillos/inmunología , Citocinas/inmunología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Animales , Linfocitos T CD8-positivos/patología , Fumar Cigarrillos/patología , Modelos Animales de Enfermedad , Lipopolisacáridos/toxicidad , Masculino , Ratones , Enfermedad Pulmonar Obstructiva Crónica/patología , Factor de Transcripción STAT3/inmunología , Factor de Transcripción STAT5/inmunología , Linfocitos T Reguladores/patología , Células Th17/patología
11.
Shock ; 27(5): 584-9, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17438466

RESUMEN

UNLABELLED: Our purpose in this study was to access the pulmonary effects of mechanical ventilation with positive end-expiratory pressure (PEEP; 10 cmH2O) or without PEEP (zero PEEP-ZEEP) in a rat model of acute myocardial infarction that resulted in hypotension but not in pulmonary congestion. METHODS: Wistar rats were anesthetized (1.5% isoflurane) and myocardial infarct was induced by ligature of the anterior interventricular coronary artery. Rats with myocardial infarct were compared with sham-operated (Sham) and closed thorax groups. RESULTS AND CONCLUSION: There was a significant decrease in MAP in the acute myocardial infarct group (92.5 +/- 4.2 mmHg) when compared with closed chest group (113.0 +/- 4.4 mmHg). There was no significant difference between acute myocardial infarct and Sham groups in PEEP or ZEEP. Mechanical ventilation for 120 min resulted in a significant increase in respiratory system elastance in the groups ventilated with ZEEP (2.59 +/- 0.17 and 2.32 +/- 0.17 cmH2O.mL, Sham and acute myocardial infarct groups, respectively). This effect of mechanical ventilation was not observed in the presence of PEEP in both groups. There was no significant increase in the amount of perivascular pulmonary edema measured in all groups studied. Mean airspace linear intercept and lung tissue distortion index also did not show statistically significant difference between Sham and acute myocardial infarct groups. We conclude that in this experimental model of acute myocardial infarct (12.4 +/- 4.1% area of necrotic tissue and 26.4 +/- 4.0% area of ischemic tissue), there was a protective pulmonary effect of PEEP.


Asunto(s)
Hipertensión/fisiopatología , Infarto del Miocardio/fisiopatología , Respiración con Presión Positiva/métodos , Análisis de Varianza , Animales , Presión Sanguínea , Modelos Animales de Enfermedad , Hipertensión/patología , Rendimiento Pulmonar , Masculino , Ratones , Infarto del Miocardio/patología , Edema Pulmonar/patología , Edema Pulmonar/fisiopatología , Ratas , Ratas Wistar , Respiración Artificial/métodos , Mecánica Respiratoria
12.
J Appl Physiol (1985) ; 123(3): 674-683, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28729393

RESUMEN

A previous study by our group showed that regular exercise training (ET) attenuated pulmonary injury in an experimental model of chronic exposure to cigarette smoke (CS) in mice, but the time-course effects of the mechanisms involved in this protection remain poorly understood. We evaluated the temporal effects of regular ET in an experimental model of chronic CS exposure. Male C57BL/6 mice were divided into four groups: Control (sedentary + air), Exercise (aerobic training + air), Smoke (sedentary + smoke), and Smoke + Exercise (aerobic training + smoke). Mice were exposed to CS and ET for 4, 8, or 12 wk. Exercise protected mice exposed to CS from emphysema and reductions in tissue damping and tissue elastance after 12 wk (P < 0.01). The total number of inflammatory cells in the bronchoalveolar lavage increased in the Smoke group, mainly due to the recruitment of macrophages after 4 wk, neutrophils and lymphocytes after 8 wk, and lymphocytes and macrophages after 12 wk (P < 0.01). Exercise attenuated this increase in mice exposed to CS. The protection conferred by exercise was mainly observed after exercise adaptation. Exercise increased IL-6 and IL-10 in the quadriceps and lungs (P < 0.05) after 12 wk. Total antioxidant capacity and SOD was increased and TNF-α and oxidants decreased in lungs of mice exposed to CS after 12 wk (P < 0.05). The protective effects of exercise against lung injury induced by cigarette smoke exposure suggests that anti-inflammatory mediators and antioxidant enzymes play important roles in chronic obstructive pulmonary disease development mainly after the exercise adaptation.NEW & NOTEWORTHY These experiments investigated for the first time the temporal effects of regular moderate exercise training in cigarette smoke-induced chronic obstructive pulmonary disease. We demonstrate that aerobic conditioning had a protective effect in emphysema development induced by cigarette smoke exposure. This effect was most likely secondary to an effect of exercise on oxidant-antioxidant balance and anti-inflammatory mediators.


Asunto(s)
Condicionamiento Físico Animal/fisiología , Enfermedad Pulmonar Obstructiva Crónica/prevención & control , Humo/efectos adversos , Productos de Tabaco/efectos adversos , Animales , Antioxidantes/metabolismo , Líquido del Lavado Bronquioalveolar/química , Inflamación/metabolismo , Inflamación/fisiopatología , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Pulmón/metabolismo , Pulmón/fisiopatología , Macrófagos/metabolismo , Macrófagos/fisiología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Neutrófilos/fisiología , Estrés Oxidativo/fisiología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/fisiopatología , Factor de Necrosis Tumoral alfa/metabolismo
13.
PLoS One ; 10(6): e0129590, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26052708

RESUMEN

To describe the progression of parenchymal remodeling and metalloproteinases gene expression in earlier stages of emphysema, mice received porcine pancreatic elastase (PPE) instillation and Control groups received saline solution. After PPE instillation (1, 3, 6 hours, 3 and 21 days) we measured the mean linear intercept, the volume proportion of types I and III collagen, elastin, fibrillin and the MMP-1, -8, -12 and -13 gene expression. We observed an initial decrease in type I (at the 3rd day) and type III collagen (from the 6th hour until the 3rd day), in posterior time points in which we detected increased gene expression for MMP-8 and -13 in PPE groups. After 21 days, the type III collagen fibers increased and the type I collagen values returned to similar values compared to control groups. The MMP-12 gene expression was increased in earlier times (3 and 6 hours) to which we detected a reduced proportion of elastin (3 days) in PPE groups, reinforcing the already established importance of MMP-12 in the breakdown of ECM. Such findings will be useful to better elucidate the alterations in ECM components and the importance of not only metalloelastase but also collagenases in earlier emphysema stages, providing new clues to novel therapeutic targets.


Asunto(s)
Colagenasas/genética , Matriz Extracelular/metabolismo , Enfisema Pulmonar/enzimología , Enfisema Pulmonar/genética , Animales , Colágeno Tipo I/metabolismo , Colágeno Tipo III/metabolismo , Colagenasas/metabolismo , Elastina/metabolismo , Inmunohistoquímica , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , ARN Mensajero/metabolismo , Sus scrofa
14.
J Appl Physiol (1985) ; 117(9): 998-1007, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25190745

RESUMEN

Aerobic exercise has been recognized as a stimulator of the immune system, but its effect on bacterial infection has not been extensively evaluated. We studied whether moderate aerobic exercise training prior to Streptococcus pneumoniae infection influences pulmonary inflammatory responses. BALB/c mice were divided into four groups: Sedentary Untreated (sedentary without infection); Sedentary Infected (sedentary with infection); Trained Untreated (aerobic training without infection); and Trained Infected (aerobic training with infection). Animals underwent aerobic training for 4 wk, and 72 h after last exercise training, animals received a challenge with S. pneumoniae and were evaluated either 12 h or 10 days after instillation. In acute phase, Sedentary Infected group had an increase in respiratory system resistance and elastance; number of neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid (BAL); polymorphonuclear cells in lung parenchyma; and levels of keratinocyte-derived chemokine (KC), tumor necrosis factor-α (TNF-α), and interleukin (IL)-1ß (IL-1ß) in lung homogenates. Exercise training significantly attenuated the increase in all of these parameters and induced an increase in expression of antioxidant enzymes (CuZnSOD and MnSOD) in lungs. Trained Infected mice had a significant decrease in the number of colony-forming units of pneumococci in the lungs compared with Sedentary Infected animals. Ten days after infection, Trained Infected group exhibited lower numbers of macrophages in BAL, polymorphonuclear cells in lung parenchyma and IL-6 in lung homogenates compared with Sedentary Infected group. Our results suggest a protective effect of moderate exercise training against respiratory infection with S. pneumoniae. This effect is most likely secondary to an effect of exercise on oxidant-antioxidant balance.


Asunto(s)
Pulmón/patología , Condicionamiento Físico Animal/fisiología , Neumonía/terapia , Streptococcus pneumoniae , Animales , Líquido del Lavado Bronquioalveolar , Interleucina-6/metabolismo , Pulmón/metabolismo , Linfocitos/metabolismo , Macrófagos/metabolismo , Ratones , Neutrófilos/metabolismo , Neumonía/microbiología , Neumonía/patología , Factor de Necrosis Tumoral alfa/metabolismo
15.
PLoS One ; 9(6): e98216, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24886716

RESUMEN

AIMS: To determine whether a serine protease inhibitor treatment can prevent or minimize emphysema in mice. METHODS: C57BL/6 mice were subjected to porcine pancreatic elastase (PPE) nasal instillation to induce emphysema and were treated with a serine protease inhibitor (rBmTI-A) before (Protocol 1) and after (Protocol 2) emphysema development. In both protocols, we evaluated lung function to evaluate the airway resistance (Raw), tissue damping (Gtis) and tissue elastance (Htis). The inflammatory profile was analyzed in the bronchoalveolar lavage (BALF) and through the use of morphometry; we measured the mean linear intercept (Lm) (to verify alveolar enlargement), the volume proportion of collagen and elastic fibers, and the numbers of macrophages and metalloprotease 12 (MMP-12) positive cells in the parenchyma. We showed that at both time points, even after the emphysema was established, the rBmTI-A treatment was sufficient to reverse the loss of elastic recoil measured by Htis, the alveolar enlargement and the increase in the total number of cells in the BALF, with a primary decrease in the number of macrophages. Although, the treatment did not control the increase in macrophages in the lung parenchyma, it was sufficient to decrease the number of positive cells for MMP-12 and reduce the volume of collagen fibers, which was increased in PPE groups. These findings attest to the importance of MMP-12 in PPE-induced emphysema and suggest that this metalloprotease could be an effective therapeutic target.


Asunto(s)
Inhibidores de Proteasas/uso terapéutico , Enfisema Pulmonar/tratamiento farmacológico , Proteínas Recombinantes/uso terapéutico , Rhipicephalus/metabolismo , Animales , Líquido del Lavado Bronquioalveolar , Bovinos , Colágeno/metabolismo , Elasticidad/efectos de los fármacos , Galectina 3/metabolismo , Inmunohistoquímica , Masculino , Metaloproteinasa 12 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Inhibidores de Proteasas/farmacología , Enfisema Pulmonar/enzimología , Enfisema Pulmonar/fisiopatología , Mecánica Respiratoria/efectos de los fármacos
16.
Respir Physiol Neurobiol ; 182(2-3): 81-7, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22633937

RESUMEN

We evaluated the effects of aerobic exercise (AE) on airway inflammation, exhaled nitric oxide levels (ENO), airway remodeling, and the expression of Th1, Th2 and regulatory cytokines in a guinea pig asthma model. Animals were divided into 4 groups: non-trained and non-sensitized (C), non-sensitized and AE (AE), ovalbumin-sensitized and non-trained (OVA), and OVA-sensitized and AE (OVA+AE). OVA inhalation was performed for 8 weeks, and AE was conducted for 6 weeks beginning in the 3rd week of OVA sensitization. Compared to the other groups, the OVA+AE group had a reduced density of eosinophils and lymphocytes, reduced expression of interleukin (IL)-4 and IL-13 and an increase in epithelium thickness (p<0.05). AE did not modify airway remodeling or ENO in the sensitized groups (p>0.05). Neither OVA nor AE resulted in differences in the expression of IL-2, IFN-γ, IL-10 or IL1-ra. Our results show that AE reduces the expression of Th2 cytokines and allergic airway inflammation and induces epithelium remodeling in sensitized guinea pigs.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Asma/inmunología , Hipersensibilidad/inmunología , Inflamación/inmunología , Animales , Asma/metabolismo , Asma/patología , Modelos Animales de Enfermedad , Cobayas , Hipersensibilidad/metabolismo , Hipersensibilidad/patología , Inflamación/metabolismo , Inflamación/patología , Masculino , Condicionamiento Físico Animal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA