Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
PLoS Genet ; 17(8): e1009757, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34449766

RESUMEN

To complete mitosis, the bridge that links the two daughter cells needs to be cleaved. This step is carried out by the endosomal sorting complex required for transport (ESCRT) machinery. AKTIP, a protein discovered to be associated with telomeres and the nuclear membrane in interphase cells, shares sequence similarities with the ESCRT I component TSG101. Here we present evidence that during mitosis AKTIP is part of the ESCRT machinery at the midbody. AKTIP interacts with the ESCRT I subunit VPS28 and forms a circular supra-structure at the midbody, in close proximity with TSG101 and VPS28 and adjacent to the members of the ESCRT III module CHMP2A, CHMP4B and IST1. Mechanistically, the recruitment of AKTIP is dependent on MKLP1 and independent of CEP55. AKTIP and TSG101 are needed together for the recruitment of the ESCRT III subunit CHMP4B and in parallel for the recruitment of IST1. Alone, the reduction of AKTIP impinges on IST1 and causes multinucleation. Our data altogether reveal that AKTIP is a component of the ESCRT I module and functions in the recruitment of ESCRT III components required for abscission.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Mitosis/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Proteínas Reguladoras de la Apoptosis/fisiología , Proteínas de Ciclo Celular/metabolismo , Citocinesis , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Células HeLa , Humanos , Transporte de Proteínas , Huso Acromático/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Nature ; 522(7555): 236-9, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26040713

RESUMEN

During telophase, the nuclear envelope (NE) reforms around daughter nuclei to ensure proper segregation of nuclear and cytoplasmic contents. NE reformation requires the coating of chromatin by membrane derived from the endoplasmic reticulum, and a subsequent annular fusion step to ensure that the formed envelope is sealed. How annular fusion is accomplished is unknown, but it is thought to involve the p97 AAA-ATPase complex and bears a topological equivalence to the membrane fusion event that occurs during the abscission phase of cytokinesis. Here we show that the endosomal sorting complex required for transport-III (ESCRT-III) machinery localizes to sites of annular fusion in the forming NE in human cells, and is necessary for proper post-mitotic nucleo-cytoplasmic compartmentalization. The ESCRT-III component charged multivesicular body protein 2A (CHMP2A) is directed to the forming NE through binding to CHMP4B, and provides an activity essential for NE reformation. Localization also requires the p97 complex member ubiquitin fusion and degradation 1 (UFD1). Our results describe a novel role for the ESCRT machinery in cell division and demonstrate a conservation of the machineries involved in topologically equivalent mitotic membrane remodelling events.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Membrana Nuclear/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Línea Celular , Cromatina/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/deficiencia , Humanos , Péptidos y Proteínas de Señalización Intracelular , Fusión de Membrana , Mitosis , Transporte de Proteínas , Proteínas/metabolismo , Telofase
3.
Carcinogenesis ; 34(7): 1476-86, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23514751

RESUMEN

In this study, we report the identification of a novel role of SIRT6 in both epirubicin and paclitaxel resistance in breast cancer. We found that SIRT6 protein levels are elevated in paclitaxel- and epirubicin-resistant MCF-7 cells compared with the parental sensitive cells. SIRT6 knockout and depletion sensitized cells to both paclitaxel and epirubicin treatment, whereas SIRT6 ectopic overexpression led to increased resistance to paclitaxel and epirubicin. Moreover, our data suggest that SIRT6 could be mediating epirubicin resistance through enhancing the DNA repair response to epirubicin-induced DNA damage. Clonogenic assays also revealed that mouse embryonic fibroblasts (MEFs) lacking SIRT6 have decreased long-term viability in response to epirubicin. The tumour suppressor FOXO3a increases its levels of acetylation in MEFs depleted of SIRT6, whereas its induction by epirubicin is attenuated in breast cancer cells overexpressing SIRT6. Further cell viability studies demonstrate that deletion of FOXO1/3/4 in MEFs can confer sensitivity to both paclitaxel and epirubicin, suggesting that SIRT6 reduces paclitaxel and epirubicin sensitivity, at least in part, through modulating FOXO acetylation and expression. Consistently, immunohistochemical analysis of 118 breast cancer patient samples revealed that high SIRT6 nuclear staining is significantly associated with poorer overall survival (P = 0.018; Kaplan-Meier analysis). Multivariate Cox analysis demonstrated that nuclear SIRT6 staining remained associated with death after correcting for tumour stage and lymph-node involvement (P = 0.033). Collectively, our data suggest that SIRT6 has a role in paclitaxel and epirubicin sensitivity via targeting FOXO proteins and that SIRT6 could be a useful biomarker and therapeutic target for paclitaxel- and epirubicin-resistant cancer.


Asunto(s)
Neoplasias de la Mama/patología , Resistencia a Antineoplásicos , Epirrubicina/farmacología , Paclitaxel/farmacología , Sirtuinas/metabolismo , Acetilación , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Muerte Celular , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Reparación del ADN , Femenino , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Células MCF-7 , Ratones , Modelos de Riesgos Proporcionales , Sirtuinas/genética
4.
J Biol Chem ; 286(50): 43112-22, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22033933

RESUMEN

Peroxisome proliferator activated receptor α (PPARα) is a distinctive marker of the brown fat phenotype that has been proposed to coordinate the transcriptional activation of genes for lipid oxidation and for thermogenic uncoupling protein 1 in brown adipose tissue. Here, we investigated the involvement of PPARα in the transcriptional control of the PPARγ coactivator (PGC)-1α gene. Treatment with PPARα agonists induced PGC-1α mRNA expression in brown fat in vivo and in primary brown adipocytes. This enhancement of PGC-1α transcription was mediated by PPARα binding to a PPAR-responsive element in the distal PGC-1α gene promoter. PGC-1α gene expression was decreased in PPARα-null brown fat, both under basal conditions and in response to thermogenic activation. Moreover, PPARα- and cAMP-mediated pathways interacted to control PGC-1α transcription. PRDM16 (PRD1-BF1-RIZ1 homologous domain-containing 16) promoted PPARα induction of PGC-1α gene transcription, especially under conditions in which protein kinase A pathways were activated. This enhancement was associated with the interaction of PRDM16 with the PGC-1α promoter at the PPARα-binding site. In addition, PPARα promoted the expression of the PRDM16 gene in brown adipocytes, and activation of PPARα in human white adipocytes led to the appearance of a brown adipocyte pattern of gene expression, including induction of PGC-1α and PRDM16. Collectively, these results suggest that PPARα acts as a key component of brown fat thermogenesis by coordinately regulating lipid catabolism and thermogenic gene expression via induction of PGC-1α and PRDM16.


Asunto(s)
Adipocitos Marrones/metabolismo , Proteínas de Unión al ADN/metabolismo , PPAR alfa/metabolismo , Termogénesis/fisiología , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Western Blotting , Células Cultivadas , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Femenino , Regulación de la Expresión Génica , Masculino , Ratones , PPAR alfa/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Unión Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa , Termogénesis/genética , Transactivadores/genética , Factores de Transcripción/genética
5.
Am J Pathol ; 179(3): 1148-56, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21763263

RESUMEN

In this study, we investigated the effects of ectopic estrogen receptor (ER)ß1 expression in breast cancer cell lines and nude mice xenografts and observed that ERß1 expression suppresses tumor growth and represses FOXM1 mRNA and protein expression in ERα-positive but not ERα-negative breast cancer cells. Furthermore, a significant inverse correlation exists between ERß1 and FOXM1 expression at both protein and mRNA transcript levels in ERα-positive breast cancer patient samples. Ectopic ERß1 expression resulted in decreased FOXM1 protein and mRNA expression only in ERα-positive but not ERα-negative breast carcinoma cell lines, suggesting that ERß1 represses ERα-dependent FOXM1 transcription. Reporter gene assays showed that ERß1 represses FOXM1 transcription through an estrogen-response element located within the proximal promoter region that is also targeted by ERα. The direct binding of ERß1 to the FOXM1 promoter was confirmed by chromatin immunoprecipitation analysis, which also showed that ectopic expression of ERß1 displaces ERα from the endogenous FOXM1 promoter. Forced expression of ERß1 promoted growth suppression in MCF-7 cells, but the anti-proliferative effects of ERß1 could be overridden by overexpression of FOXM1, indicating that FOXM1 is an important downstream target of ERß1 signaling. Together, these findings define a key anti-proliferative role for ERß1 in breast cancer development through negatively regulating FOXM1 expression.


Asunto(s)
Neoplasias de la Mama/patología , Proliferación Celular , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/fisiología , Factores de Transcripción Forkhead/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Proteína Forkhead Box M1 , Humanos , Inmunohistoquímica , Ratones , Ratones Desnudos , Trasplante de Neoplasias , ARN Mensajero/metabolismo , Transcripción Genética , Trasplante Heterólogo
6.
Drug Resist Updat ; 14(1): 35-44, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21195657

RESUMEN

Sirtuins, commonly referred to as SIRTs, are a family of seven mammalian NAD+-dependent deacetylases implicated in the regulation of critical biological processes, including metabolism, cell division, differentiation, survival, and senescence. These diverse functions reflect the ability of SIRTs to target and modify a broad spectrum of protein substrates, including cytoskeletal proteins, signalling components, transcription factors, and histones. SIRTs are also implicated in tumorigenesis as well as in the response of the tumour to chemotherapy. In particular, SIRT1 has been found to be overexpressed in many drug resistant cancers. Emerging evidence suggests that the role of SIRTs in drug resistance may be foremost related to their ability to target and modulate the activity of tumour suppressors, including p53, p73, E2F1, and FOXO3a. In other words, while SIRT-dependent deacetylation of transcription factors is normally used to fine-tune gene expression, this function is hijacked by cancer cells to evade proliferative arrest and cell death in response to chemotherapy. Consequently, interventions predicated on disrupting the interactions between tumour suppressors and SIRTs may be effective in circumventing or reversing drug resistance in cancer.


Asunto(s)
Resistencia a Antineoplásicos , Sirtuinas/metabolismo , Factores de Transcripción/metabolismo , Animales , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Sirtuina 1/genética , Sirtuina 1/metabolismo , Sirtuinas/genética , Factores de Transcripción/genética
7.
Membranes (Basel) ; 12(6)2022 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-35736340

RESUMEN

The ESCRT machinery is an evolutionarily conserved membrane remodeling complex that is used by the cell to perform reverse membrane scission in essential processes like protein degradation, cell division, and release of enveloped retroviruses. ESCRT-III, together with the AAA ATPase VPS4, harbors the main remodeling and scission function of the ESCRT machinery, whereas early-acting ESCRTs mainly contribute to protein sorting and ESCRT-III recruitment through association with upstream targeting factors. Here, we review recent advances in our understanding of the molecular mechanisms that underlie membrane constriction and scission by ESCRT-III and describe the involvement of this machinery in the sealing and repairing of damaged cellular membranes, a key function to preserve cellular viability and organellar function.

8.
Elife ; 102021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34286694

RESUMEN

Through membrane sealing and disassembly of spindle microtubules, the Endosomal Sorting Complex Required for Transport-III (ESCRT-III) machinery has emerged as a key player in the regeneration of a sealed nuclear envelope (NE) during mitotic exit, and in the repair of this organelle during interphase rupture. ESCRT-III assembly at the NE occurs transiently during mitotic (M) exit and is initiated when CHMP7, an ER-localised ESCRT-II/ESCRT-III hybrid protein, interacts with the Inner Nuclear Membrane (INM) protein LEM2. Whilst classical nucleocytoplasmic transport mechanisms have been proposed to separate LEM2 and CHMP7 during interphase, it is unclear how CHMP7 assembly is suppressed in mitosis when NE and ER identities are mixed. Here, we use live cell imaging and protein biochemistry to examine the biology of these proteins during M-exit. Firstly, we show that CHMP7 plays an important role in the dissolution of LEM2 clusters that form at the NE during M-exit. Secondly, we show that CDK1 phosphorylates CHMP7 upon M-entry at Ser3 and Ser441 and that this phosphorylation reduces CHMP7's interaction with LEM2, limiting its assembly during M-phase. We show that spatiotemporal differences in the dephosphorylation of CHMP7 license its assembly at the NE during telophase, but restrict its assembly on the ER at this time. Without CDK1 phosphorylation, CHMP7 undergoes inappropriate assembly in the peripheral ER during M-exit, capturing LEM2 and downstream ESCRT-III components. Lastly, we establish that a microtubule network is dispensable for ESCRT-III assembly at the reforming nuclear envelope. These data identify a key cell-cycle control programme allowing ESCRT-III-dependent nuclear regeneration.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Membrana Nuclear/metabolismo , Proteína Quinasa CDC2/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Células HeLa , Humanos , Proteínas de la Membrana , Microtúbulos/metabolismo , Mitosis , Proteínas Nucleares , Telofase
9.
Methods Mol Biol ; 1890: 61-76, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30414145

RESUMEN

All four FOXO isoforms have been shown to respond to changes in the cellular redox status of the cell, and regulate the expression of target genes that in turn can modulate the cellular oxidative status. However, the mechanisms involved are still controversial. It is clear though that redox regulation of FOXO factors occurs at different levels. The proteins themselves are redox-sensitive and their capacity to bind their target sites seems to be at least partially dependent on their oxidative status. Importantly, several of the cofactors that are known to regulate FOXO transcriptional activity are also sensitive to changes in the cellular redox status, in particular the deacetylase SirT1 is activated in response to reduced levels of reducing equivalents (increased NAD+/NADH+ ratio) and the coactivator PGC-1α is induced in response to increased cellular oxidative stress. Furthermore, nuclear localization of FOXO factors is also regulated by proteins that, like AKT, are themselves regulated directly or indirectly by the cellular levels of reactive oxygen and nitrogen species. In this technical review, we aim to update the current status of our knowledge of how to handle redox-regulated FOXO factor research in order to better understand FOXO biology.


Asunto(s)
Antioxidantes/metabolismo , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Oxidación-Reducción , Animales , Línea Celular , Supervivencia Celular/genética , Factores de Transcripción Forkhead/genética , Vectores Genéticos/genética , Humanos , Ratones , Mutación , Estrés Oxidativo/genética , Transfección
10.
Dev Cell ; 47(5): 547-563.e6, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30513301

RESUMEN

The coordinated reformation of the nuclear envelope (NE) after mitosis re-establishes the structural integrity and the functionality of the nuclear compartment. The endosomal sorting complex required for transport (ESCRT) machinery, a membrane remodeling pathway that is highly conserved in eukaryotes, has been recently involved in NE resealing by mediating the annular fusion of the nuclear membrane (NM). We show here that CC2D1B, a regulator of ESCRT polymerization, is required to re-establish the nuclear compartmentalization by coordinating endoplasmic reticulum (ER) membrane deposition around chromatin disks with ESCRT-III recruitment to the reforming NE. Accordingly, CC2D1B determines the spatiotemporal distribution of the CHMP7-ESCRT-III axis during NE reformation. Crucially, in CC2D1B-depleted cells, ESCRT activity is uncoupled from Spastin-mediated severing of spindle microtubules, resulting in persisting microtubules that compromise nuclear morphology. Therefore, we reveal CC2D1B as an essential regulatory factor that licenses the formation of ESCRT-III polymers to ensure the orderly reformation of the NE.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Mitosis , Membrana Nuclear/metabolismo , Proteínas Represoras/metabolismo , Animales , Línea Celular , Cromatina/metabolismo , Células HCT116 , Células HeLa , Humanos , Ratones , Microtúbulos/metabolismo , Proteínas Represoras/genética
11.
Mol Cancer Ther ; 16(11): 2410-2421, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28830982

RESUMEN

Thousand-and-one amino acid kinases (TAOK) 1 and 2 are activated catalytically during mitosis and can contribute to mitotic cell rounding and spindle positioning. Here, we characterize a compound that inhibits TAOK1 and TAOK2 activity with IC50 values of 11 to 15 nmol/L, is ATP-competitive, and targets these kinases selectively. TAOK inhibition or depletion in centrosome-amplified SKBR3 or BT549 breast cancer cell models increases the mitotic population, the percentages of mitotic cells displaying amplified centrosomes and multipolar spindles, induces cell death, and inhibits cell growth. In contrast, nontumorigenic and dividing bipolar MCF-10A breast cells appear less dependent on TAOK activity and can complete mitosis and proliferate in the presence of the TAOK inhibitor. We demonstrate that TAOK1 and TAOK2 localize to the cytoplasm and centrosomes respectively during mitosis. Live cell imaging shows that the TAOK inhibitor prolongs the duration of mitosis in SKBR3 cells, increases mitotic cell death, and reduces the percentages of cells exiting mitosis, whereas MCF-10A cells continue to divide and proliferate. Over 80% of breast cancer tissues display supernumerary centrosomes, and tumor cells frequently cluster extra centrosomes to avoid multipolar mitoses and associated cell death. Consequently, drugs that stimulate centrosome declustering and induce multipolarity are likely to target dividing centrosome-amplified cancer cells preferentially, while sparing normal bipolar cells. Our results demonstrate that TAOK inhibition can enhance centrosome declustering and mitotic catastrophe in cancer cells, and these proteins may therefore offer novel therapeutic targets suitable for drug inhibition and the potential treatment of breast cancers, where supernumerary centrosomes occur. Mol Cancer Ther; 16(11); 2410-21. ©2017 AACR.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Centrosoma/efectos de los fármacos , Femenino , Humanos , Mitosis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Quinasas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Huso Acromático/efectos de los fármacos
12.
Curr Biol ; 26(19): 2635-2641, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27618263

RESUMEN

In addition to its role in membrane abscission during cytokinesis, viral budding, endosomal sorting, and plasma membrane repair [1], the endosomal sorting complex required for transport-III (ESCRT-III) machinery has recently been shown to seal holes in the reforming nuclear envelope (NE) during mitotic exit [2, 3]. ESCRT-III also acts during interphase to repair the NE upon migration-induced rupture [4, 5], highlighting its key role as an orchestrator of membrane integrity at this organelle. While NE localization of ESCRT-III is dependent upon the ESCRT-III component CHMP7 [3], it is unclear how this complex is able to engage nuclear membranes. Here we show that the N terminus of CHMP7 acts as a novel membrane-binding module. This membrane-binding ability allows CHMP7 to bind to the ER, an organelle continuous with the NE, and it provides a platform to direct NE recruitment of ESCRT-III during mitotic exit. CHMP7's N terminus comprises tandem Winged-Helix domains [6], and, by using homology modeling and structure-function analysis, we identify point mutations that disrupt membrane binding and prevent both ER localization of CHMP7 and its subsequent enrichment at the reforming NE. These mutations also prevent assembly of downstream ESCRT-III components at the reforming NE and proper establishment of post-mitotic nucleo-cytoplasmic compartmentalization. These data identify a novel membrane-binding activity within an ESCRT-III subunit that is essential for post-mitotic nuclear regeneration.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Membrana Nuclear/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , División Celular , Línea Celular Tumoral , Chlorocebus aethiops , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Células HeLa , Humanos , Alineación de Secuencia
13.
Free Radic Biol Med ; 93: 41-51, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26828021

RESUMEN

UNLABELLED: Peroxisome proliferator activated receptor γ co-activator 1α (PGC-1α) is a regulator of mitochondrial metabolism and reactive oxygen species (ROS) that is known to play a relevant role in angiogenesis. AIMS: This study aims to investigate the role of ROS on the regulation by PGC-1α of angiogenesis. METHODS AND RESULTS: We found that endothelial cells (ECs) from mice deleted for PGC-1α display attenuated adhesion to the extracellular matrix, together with slower and reversible spreading. Structural analysis demonstrates unstable formation of focal adhesions, defective cytoskeleton reorganization in response to cellular matrix adhesion, cell migration and cell-cell adhesion. Confluent cultures showed also a reduction of membrane bound VE-cadherin, suggesting defective inter-cellular junction formation. Functional consequences included impaired directional migration, and enhanced tip phenotype in aortic explants sprouting assays. At the molecular level, PGC-1α-deleted ECs exhibit a constitutive activation of the vascular endothelial growth factor-A (VEGF-A) signaling pathway and a defective response to VEGF-A. All these alterations are partially reversed by administration of the antioxidant EUK-189. The contribution of mitochondrial ROS and NOX activation was confirmed using a mitochondrial targeted antioxidant (MitoTEMPO) and a NOX inhibitor (VAS-2870). These results indicate that elevated production of ROS in the absence of PGC-1α is a key factor in the alteration of the VEGF-A signaling pathway and the capacity of endothelial cells to form stable interactions with other endothelial cells and with the extracellular matrix. Our findings show that PGC-1α control of ROS homeostasis plays an important role in the control of endothelial response to VEGF-A.


Asunto(s)
Neovascularización Patológica/genética , Estrés Oxidativo/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/biosíntesis , Factor A de Crecimiento Endotelial Vascular/genética , Animales , Antígenos CD/metabolismo , Antioxidantes/metabolismo , Cadherinas/metabolismo , Células Endoteliales/metabolismo , Matriz Extracelular/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Compuestos Organometálicos/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Salicilatos/administración & dosificación , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo
14.
Antioxid Redox Signal ; 19(13): 1507-21, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23461683

RESUMEN

UNLABELLED: SirT1 is a class III histone deacetylase that has been implicated in metabolic and reactive oxygen species control. In the vasculature it has been shown to decrease endothelial superoxide production, prevent endothelial dysfunction and atherosclerosis. However, the mechanisms that mediate SirT1 antioxidant functions remain to be characterized. The transcription factor FoxO3a and the transcriptional coactivator peroxisome proliferator activated receptor γ-coactivator 1α (PGC-1α) have been shown to induce the expression of antioxidant genes and to be deacetylated by SirT1. AIMS: Here we investigated SirT1 regulation of antioxidant genes and the roles played by FoxO3a and PGC-1α in this regulation. RESULTS: We found that SirT1 regulates the expression of several antioxidant genes in bovine aortic endothelial cells, including Mn superoxide dismutase (MnSOD), catalase, peroxiredoxins 3 and 5 (Prx3, Prx5), thioredoxin 2 (Trx2), thioredoxin reductase 2 (TR2), and uncoupling protein 2 (UCP-2) and can be localized in the regulatory regions of these genes. We also found that knockdown of either FoxO3a or PGC-1α prevented the induction of antioxidant genes by SirT1 over-expression. Furthermore, SirT1 increased the formation of a FoxO3a/PGC-1α complex as determined by co-immunoprecipitation (IP) assays, concomitantly reducing H2O2-dependent FoxO3a and PGC-1α acetylation. Data showing that FoxO3a knockdown increases PGC-1α acetylation levels and vice versa, suggest that SirT1 activity on FoxO3a and PGC-1α may be dependent of the formation of a FoxO3a/PGC-1α complex. INNOVATION: A unifying mechanism for SirT1 activities is suggested. CONCLUSION: We show that SirT1 regulation of antioxidant genes in vascular endothelial cells depends on the formation of a FoxO3a/PGC-1α complex.


Asunto(s)
Antioxidantes , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Sirtuina 1/metabolismo , Factores de Transcripción/metabolismo , Animales , Catalasa/genética , Catalasa/metabolismo , Bovinos , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/metabolismo , Proteína Forkhead Box O3 , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo , Peroxiredoxina III/genética , Peroxiredoxina III/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Tiorredoxina Reductasa 2/genética , Tiorredoxina Reductasa 2/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Proteína Desacopladora 2
15.
Endocrinology ; 153(3): 1162-73, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22253419

RESUMEN

Retinol binding protein-4 (RBP4) is a serum protein involved in the transport of vitamin A. It is known to be produced by the liver and white adipose tissue. RBP4 release by white fat has been proposed to induce insulin resistance. We analyzed the regulation and production of RBP4 in brown adipose tissue. RBP4 gene expression is induced in brown fat from mice exposed to cold or treated with peroxisome proliferator-activated receptor (PPAR) agonists. In brown adipocytes in culture, norepinephrine, cAMP, and activators of PPARγ and PPARα induced RBP4 gene expression and RBP4 protein release. The induction of RBP4 gene expression by norepinephrine required intact PPAR-dependent pathways, as evidenced by impaired response of the RBP4 gene expression to norepinephrine in PPARα-null brown adipocytes or in the presence of inhibitors of PPARγ and PPARα. PPARγ and norepinephrine can also induce the RBP4 gene in white adipocytes, and overexpression of PPARα confers regulation by this PPAR subtype to white adipocytes. The RBP4 gene promoter transcription is activated by cAMP, PPARα, and PPARγ. This is mediated by a PPAR-responsive element capable of binding PPARα and PPARγ and required also for activation by cAMP. The induction of the RBP4 gene expression by norepinephrine in brown adipocytes is protein synthesis dependent and requires PPARγ-coactivator-1-α, which acts as a norepinephine-induced coactivator of PPAR on the RBP4 gene. We conclude that PPARγ- and PPARα-mediated signaling controls RBP4 gene expression and releases in brown adipose tissue, and thermogenic activation induces RBP4 gene expression in brown fat through mechanisms involving PPARγ-coactivator-1-α coactivation of PPAR signaling.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo/metabolismo , AMP Cíclico/metabolismo , Regulación de la Expresión Génica , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Proteínas Plasmáticas de Unión al Retinol/biosíntesis , Transactivadores/metabolismo , Animales , Inhibidores Enzimáticos/farmacología , Resistencia a la Insulina , Ratones , Modelos Biológicos , PPAR alfa/antagonistas & inhibidores , PPAR gamma/antagonistas & inhibidores , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Regiones Promotoras Genéticas , Tiazolidinedionas/farmacología , Factores de Transcripción/metabolismo , Regulación hacia Arriba
16.
Curr Drug Targets ; 12(9): 1322-50, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21443460

RESUMEN

FOXO transcription factors control proliferation, apoptosis, differentiation and metabolic processes. Loss of FOXO function has been identified in several human cancers, and results in increased cellular survival and a predisposition to neoplasia, especially in epithelial cancer. FOXO factors are therefore bona fide tumor suppressors, and their potential use as therapeutic targets in cancer has been a matter of debate. Importantly, FOXO factors can also positively regulate cell survival through the activation of several detoxification genes, complicating its putative therapeutic potential. Targeting of FOXO factors has also been proposed for the treatment of metabolic dysfunctions such as diabetes mellitus, immunological disorders and neurodegeneration, as well as for the prevention of aging by maintaining the hematopoyetic stem cells niche. But again, data has accumulated that cautions against the potential use of the FOXO activators in these settings. Therefore, greater understanding of the regulation of FOXO target specificity is still needed to boost its use as a therapeutic target. The four members of the FOXO family (FOXO1, FOXO3A, FOXO4 and FOXO6) have distinct but overlapping cellular functions, although they seem to bind a common set of DNA sites. This fact together with the observation that FOXOs are only partially dependent on their DNA binding activity to regulate their target genes highlights the fact that the interaction of the FOXOs with other transcription factors is crucial for the FOXO-mediated transcriptional programs. In this review, we provide an overview of recent progress in the understanding of the modulation of FOXO activity and target specificity by transcription factors and coactivators.


Asunto(s)
Sistemas de Liberación de Medicamentos , Factores de Transcripción Forkhead/metabolismo , Neoplasias/tratamiento farmacológico , Envejecimiento , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Humanos , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/fisiopatología , Neoplasias/patología
17.
Mol Cell Biol ; 30(16): 4035-44, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20547753

RESUMEN

In damaged or proliferating endothelium, production of nitric oxide (NO) from endothelial nitric oxide synthase (eNOS) is associated with elevated levels of reactive oxygen species (ROS), which are necessary for endothelial migration. We aimed to elucidate the mechanism that mediates NO induction of endothelial migration. NO downregulates expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha), which positively modulates several genes involved in ROS detoxification. We tested whether NO-induced cell migration requires PGC-1 alpha downregulation and investigated the regulatory pathway involved. PGC-1 alpha negatively regulated NO-dependent endothelial cell migration in vitro, and inactivation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway, which is activated by NO, reduced NO-mediated downregulation of PGC-1 alpha. Expression of constitutively active Foxo3a, a target for Akt-mediated inactivation, reduced NO-dependent PGC-1 alpha downregulation. Foxo3a is also a direct transcriptional regulator of PGC-1 alpha, and we found that a functional FoxO binding site in the PGC-1 alpha promoter is also a NO response element. These results show that NO-mediated downregulation of PGC-1 alpha is necessary for NO-induced endothelial migration and that NO/protein kinase G (PKG)-dependent downregulation of PGC-1 alpha and the ROS detoxification system in endothelial cells are mediated by the PI3K/Akt signaling pathway and subsequent inactivation of the FoxO transcription factor Foxo3a.


Asunto(s)
Células Endoteliales/fisiología , Factores de Transcripción Forkhead/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Transactivadores/metabolismo , Animales , Secuencia de Bases , Bovinos , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Células Cultivadas , GMP Cíclico/metabolismo , GMP Cíclico/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Regulación hacia Abajo , Células Endoteliales/efectos de los fármacos , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Guanilato Ciclasa/metabolismo , Ratones , Modelos Biológicos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Transactivadores/genética , Factores de Transcripción , Triazenos/farmacología
18.
J Biol Chem ; 284(21): 14476-84, 2009 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-19324885

RESUMEN

Oxidative stress is a hallmark of metabolism-related diseases and a risk factor for atherosclerosis. FoxO factors have been shown to play a key role in vascular endothelial development and homeostasis. Foxo3a can protect quiescent cells from oxidative stress through the regulation of detoxification genes such as sod2 and catalase. Here we show that Foxo3a is a direct transcriptional regulator of a group of oxidative stress protection genes in vascular endothelial cells. Importantly, Foxo3a activity requires the transcriptional co-activator PGC-1alpha, because it is severely curtailed in PGC-1alpha-deficient endothelial cells. Foxo3a and PGC-1alpha appear to interact directly, as shown by co-immunoprecipitation and in vitro interaction assays, and are recruited to the same promoter regions. The notion that Foxo3a and PGC-1alpha interact directly to regulate oxidative stress protection genes in the vascular endothelium is supported by the observation that PGC-1alpha transcriptional activity at the sod2 (manganese superoxide dismutase) promoter requires a functional FoxO site. We also demonstrate that Foxo3a is a direct transcriptional regulator of PGC-1alpha, suggesting that an auto-regulatory cycle regulates Foxo3a/PGC-1alpha control of the oxidative stress response.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Estrés Oxidativo/genética , Transactivadores/metabolismo , Animales , Bovinos , Células Cultivadas , Células Endoteliales/metabolismo , Inducción Enzimática , Proteína Forkhead Box O3 , Humanos , Ratones , Modelos Biológicos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Unión Proteica , Superóxido Dismutasa/biosíntesis , Factores de Transcripción , Venas Umbilicales/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA