Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 149(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36245218

RESUMEN

Periodontal tissue supports teeth in the alveolar bone socket via fibrous attachment of the periodontal ligament (PDL). The PDL contains periodontal fibroblasts and stem/progenitor cells, collectively known as PDL cells (PDLCs), on top of osteoblasts and cementoblasts on the surface of alveolar bone and cementum, respectively. However, the characteristics and lineage hierarchy of each cell type remain poorly defined. This study identified periodontal ligament associated protein-1 (Plap-1) as a PDL-specific extracellular matrix protein. We generated knock-in mice expressing CreERT2 and GFP specifically in Plap-1-positive PDLCs. Genetic lineage tracing confirmed the long-standing hypothesis that PDLCs differentiate into osteoblasts and cementoblasts. A PDL single-cell atlas defined cementoblasts and osteoblasts as Plap-1-Ibsp+Sparcl1+ and Plap-1-Ibsp+Col11a2+, respectively. Other populations, such as Nes+ mural cells, S100B+ Schwann cells, and other non-stromal cells, were also identified. RNA velocity analysis suggested that a Plap-1highLy6a+ cell population was the source of PDLCs. Lineage tracing of Plap-1+ PDLCs during periodontal injury showed periodontal tissue regeneration by PDLCs. Our study defines diverse cell populations in PDL and clarifies the role of PDLCs in periodontal tissue homeostasis and repair.


Asunto(s)
Ligamento Periodontal , Transcriptoma , Animales , Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular/genética , Proteínas de la Matriz Extracelular/metabolismo , Ratones , Osteoblastos , ARN/metabolismo
2.
Circ Res ; 133(6): 463-480, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37555328

RESUMEN

BACKGROUND: Cardiac valve disease is observed in 2.5% of the general population and 10% of the elderly people. Effective pharmacological treatments are currently not available, and patients with severe cardiac valve disease require surgery. PROX1 (prospero-related homeobox transcription factor 1) and FOXC2 (Forkhead box C2 transcription factor) are transcription factors that are required for the development of lymphatic and venous valves. We found that PROX1 and FOXC2 are expressed in a subset of valvular endothelial cells (VECs) that are located on the downstream (fibrosa) side of cardiac valves. Whether PROX1 and FOXC2 regulate cardiac valve development and disease is not known. METHODS: We used histology, electron microscopy, and echocardiography to investigate the structure and functioning of heart valves from Prox1ΔVEC mice in which Prox1 was conditionally deleted from VECs. Isolated valve endothelial cells and valve interstitial cells were used to identify the molecular mechanisms in vitro, which were tested in vivo by RNAScope, additional mouse models, and pharmacological approaches. The significance of our findings was tested by evaluation of human samples of mitral valve prolapse and aortic valve insufficiency. RESULTS: Histological analysis revealed that the aortic and mitral valves of Prox1ΔVEC mice become progressively thick and myxomatous. Echocardiography revealed that the aortic valves of Prox1ΔVEC mice are stenotic. FOXC2 was downregulated and PDGF-B (platelet-derived growth factor-B) was upregulated in the VECs of Prox1ΔVEC mice. Conditional knockdown of FOXC2 and conditional overexpression of PDGF-B in VECs recapitulated the phenotype of Prox1ΔVEC mice. PDGF-B was also increased in mice lacking FOXC2 and in human mitral valve prolapse and insufficient aortic valve samples. Pharmacological inhibition of PDGF-B signaling with imatinib partially ameliorated the valve defects of Prox1ΔVEC mice. CONCLUSIONS: PROX1 antagonizes PDGF-B signaling partially via FOXC2 to maintain the extracellular matrix composition and prevent myxomatous degeneration of cardiac valves.


Asunto(s)
Enfermedades de las Válvulas Cardíacas , Prolapso de la Válvula Mitral , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Enfermedades de las Válvulas Cardíacas/genética , Enfermedades de las Válvulas Cardíacas/prevención & control , Enfermedades de las Válvulas Cardíacas/metabolismo , Válvula Mitral/metabolismo , Prolapso de la Válvula Mitral/metabolismo , Factores de Transcripción/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo
3.
Genes Dev ; 31(16): 1666-1678, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28924035

RESUMEN

Platelet-derived growth factor (PDGF) acts through two conserved receptor tyrosine kinases: PDGFRα and PDGFRß. Gain-of-function mutations in human PDGFRB have been linked recently to genetic diseases characterized by connective tissue wasting (Penttinen syndrome) or overgrowth (Kosaki overgrowth syndrome), but it is unclear whether PDGFRB mutations alone are responsible. Mice with constitutive PDGFRß signaling caused by a kinase domain mutation (D849V) develop lethal autoinflammation. Here we used a genetic approach to investigate the mechanism of autoinflammation in Pdgfrb+/D849V mice and test the hypothesis that signal transducer and activator of transcription 1 (STAT1) mediates this phenotype. We show that Pdgfrb+/D849V mice with Stat1 knockout (Stat1-/-Pdgfrb+/D849V ) are rescued from autoinflammation and have improved life span compared with Stat1+/-Pdgfrb+/D849V mice. Furthermore, PDGFRß-STAT1 signaling suppresses PDGFRß itself. Thus, Stat1-/-Pdgfrb+/D849V fibroblasts exhibit increased PDGFRß signaling, and mice develop progressive overgrowth, a distinct phenotype from the wasting seen in Stat1+/-Pdgfrb+/D849V mice. Deletion of interferon receptors (Ifnar1 or Ifngr1) does not rescue wasting in Pdgfrb+/D849V mice, indicating that interferons are not required for autoinflammation. These results provide functional evidence that elevated PDGFRß signaling causes tissue wasting or overgrowth reminiscent of human genetic syndromes and that the STAT1 pathway is a crucial modulator of this phenotypic spectrum.


Asunto(s)
Trastornos del Crecimiento/genética , Mutación , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Transcripción STAT1/genética , Tejido Adiposo/patología , Animales , Aorta/patología , Atrofia , Huesos/anomalías , Femenino , Fibroblastos/metabolismo , Fibrosis , Trastornos del Crecimiento/metabolismo , Trastornos del Crecimiento/patología , Hiperplasia , Inflamación/metabolismo , Interferones/fisiología , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/patología , Células 3T3 NIH , Fenotipo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Piel/patología
4.
Development ; 148(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738614

RESUMEN

Autosomal dominant PDGFRß gain-of-function mutations in mice and humans cause a spectrum of wasting and overgrowth disorders afflicting the skeleton and other connective tissues, but the cellular origin of these disorders remains unknown. We demonstrate that skeletal stem cells (SSCs) isolated from mice with a gain-of-function D849V point mutation in PDGFRß exhibit colony formation defects that parallel the wasting or overgrowth phenotypes of the mice. Single-cell RNA transcriptomics with SSC-derived polyclonal colonies demonstrates alterations in osteogenic and chondrogenic precursors caused by PDGFRßD849V. Mutant cells undergo poor osteogenesis in vitro with increased expression of Sox9 and other chondrogenic markers. Mice with PDGFRßD849V exhibit osteopenia. Increased STAT5 phosphorylation and overexpression of Igf1 and Socs2 in PDGFRßD849V cells suggests that overgrowth in mice involves PDGFRßD849V activating the STAT5-IGF1 axis locally in the skeleton. Our study establishes that PDGFRßD849V causes osteopenic skeletal phenotypes that are associated with intrinsic changes in SSCs, promoting chondrogenesis over osteogenesis.


Asunto(s)
Mutación con Ganancia de Función , Mioblastos Esqueléticos/metabolismo , Mutación Puntual , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Sustitución de Aminoácidos , Animales , Condrogénesis/genética , Regulación de la Expresión Génica , Ratones , Ratones Transgénicos , Mioblastos Esqueléticos/patología , Osteogénesis/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/genética
5.
Genes Dev ; 29(11): 1106-19, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26019175

RESUMEN

Fibrosis is a common disease process in which profibrotic cells disturb organ function by secreting disorganized extracellular matrix (ECM). Adipose tissue fibrosis occurs during obesity and is associated with metabolic dysfunction, but how profibrotic cells originate is still being elucidated. Here, we use a developmental model to investigate perivascular cells in white adipose tissue (WAT) and their potential to cause organ fibrosis. We show that a Nestin-Cre transgene targets perivascular cells (adventitial cells and pericyte-like cells) in WAT, and Nestin-GFP specifically labels pericyte-like cells. Activation of PDGFRα signaling in perivascular cells causes them to transition into ECM-synthesizing profibrotic cells. Before this transition occurs, PDGFRα signaling up-regulates mTOR signaling and ribosome biogenesis pathways and perturbs the expression of a network of epigenetically imprinted genes that have been implicated in cell growth and tissue homeostasis. Isolated Nestin-GFP(+) cells differentiate into adipocytes ex vivo and form WAT when transplanted into recipient mice. However, PDGFRα signaling opposes adipogenesis and generates profibrotic cells instead, which leads to fibrotic WAT in transplant experiments. These results identify perivascular cells as fibro/adipogenic progenitors in WAT and show that PDGFRα targets progenitor cell plasticity as a profibrotic mechanism.


Asunto(s)
Tejido Adiposo/citología , Tejido Adiposo/fisiopatología , Fibrosis/fisiopatología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Adipogénesis/genética , Animales , Diferenciación Celular , Proliferación Celular , Trasplante de Células , Células Cultivadas , Regulación Neoplásica de la Expresión Génica , Ratones , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Células Madre/patología
6.
Development ; 144(1): 83-94, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28049691

RESUMEN

Adipose tissue is distributed in depots throughout the body with specialized roles in energy storage and thermogenesis. PDGFRα is a marker of adipocyte precursors, and increased PDGFRα activity causes adipose tissue fibrosis in adult mice. However, the function of PDGFRα during adipose tissue organogenesis is unknown. Here, by analyzing mice with juxtamembrane or kinase domain point mutations that increase PDGFRα activity (V561D or D842V), we found that PDGFRα activation inhibits embryonic white adipose tissue organogenesis in a tissue-autonomous manner. By lineage tracing analysis, we also found that collagen-expressing precursor fibroblasts differentiate into white adipocytes in the embryo. PDGFRα inhibited the formation of adipocytes from these precursors while favoring the formation of stromal fibroblasts. This imbalance between adipocytes and stromal cells was accompanied by overexpression of the cell fate regulator Zfp521. PDGFRα activation also inhibited the formation of juvenile beige adipocytes in the inguinal fat pad. Our data highlight the importance of balancing stromal versus adipogenic cell expansion during white adipose tissue development, with PDGFRα activity coordinating this crucial process in the embryo.


Asunto(s)
Adipocitos/fisiología , Adipogénesis/genética , Tejido Adiposo/embriología , Organogénesis/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/fisiología , Células del Estroma/fisiología , Tejido Adiposo/crecimiento & desarrollo , Tejido Adiposo/fisiología , Sustitución de Aminoácidos , Animales , Animales Recién Nacidos , Linaje de la Célula/genética , Células Cultivadas , Embrión de Mamíferos , Femenino , Lipodistrofia/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación Puntual , Embarazo
7.
Wound Repair Regen ; 28(4): 448-459, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32175700

RESUMEN

Signal transducer and activator of transcription 1 (Stat1) is a ubiquitously expressed latent transcription factor that is activated by many cytokines and growth factors. Global Stat1 knockout mice are prone to chemical-induced lung and liver fibrosis, suggesting roles for Stat1 in tissue repair. However, the importance of Stat1 in fibroblast-mediated and vascular smooth muscle cell (VSMC)-mediated injury response has not been directly evaluated in vivo. Here, we focused on two models of tissue repair in conditional Stat1 knockout mice: excisional skin wounding in mice with Stat1 deletion in dermal fibroblasts, and carotid artery ligation in mice with global Stat1 deletion or deletion specific to VSMCs. In the skin model, dermal wounds closed at a similar rate in mice with fibroblast Stat1 deletion and controls, but collagen and α-smooth muscle actin (αSMA) expression were increased in the mutant granulation tissue. Cultured Stat1 -/- and Stat1 +/- dermal fibroblasts exhibited similar αSMA+ stress fiber assembly, collagen gel contraction, proliferation, migration, and growth factor-induced gene expression. In the artery ligation model, there was a significant increase in fibroblast-driven perivascular fibrosis when Stat1 was deleted globally. However, VSMC-driven remodeling and neointima formation were unchanged when Stat1 was deleted specifically in VSMCs. These results suggest an in vivo role for Stat1 as a suppressor of fibroblast mediated, but not VSMC mediated, injury responses, and a suppressor of the myofibroblast phenotype.


Asunto(s)
Arterias Carótidas/metabolismo , Fibroblastos/metabolismo , Miocitos del Músculo Liso/metabolismo , Miofibroblastos/metabolismo , Repitelización/genética , Factor de Transcripción STAT1/genética , Piel/metabolismo , Actinas/metabolismo , Animales , Traumatismos de las Arterias Carótidas/metabolismo , Movimiento Celular/genética , Proliferación Celular/genética , Colágeno/metabolismo , Regulación de la Expresión Génica/genética , Tejido de Granulación/metabolismo , Ratones , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Fenotipo , Cicatrización de Heridas/genética
8.
Kidney Int ; 91(3): 642-657, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27914705

RESUMEN

Pigment epithelium-derived factor (PEDF) expression is downregulated in the kidneys of diabetic rats, and delivery of PEDF suppressed renal fibrotic factors in these animals. PEDF has multiple functions including anti-angiogenic, anti-inflammatory and antifibrotic activities. Since the mechanism underlying its antifibrotic effect remains unclear, we studied this in several murine models of renal disease. Renal PEDF levels were significantly reduced in genetic models of type 1 and type 2 diabetes (Akita and db/db, respectively), negatively correlating with Wnt signaling activity in the kidneys. In unilateral ureteral obstruction, an acute renal injury model, there were significant decreases of renal PEDF levels. The kidneys of PEDF knockout mice with ureteral obstruction displayed exacerbated expression of fibrotic and inflammatory factors, oxidative stress, tubulointerstitial fibrosis, and tubule epithelial cell apoptosis, compared to the kidneys of wild-type mice with obstruction. PEDF knockout enhanced Wnt signaling activation induced by obstruction, while PEDF inhibited the Wnt pathway-mediated fibrosis in primary renal proximal tubule epithelial cells. Additionally, oxidative stress was aggravated in renal proximal tubule epithelial cells isolated from knockout mice and suppressed by PEDF treatment of renal proximal tubule epithelial cells. PEDF also reduced oxidation-induced apoptosis in renal proximal tubule epithelial cells. Thus, the renoprotective effects of PEDF are mediated, at least partially, by inhibition of the Wnt pathway. Hence, restoration of renal PEDF levels may have therapeutic potential for renal fibrosis.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Epiteliales/metabolismo , Proteínas del Ojo/metabolismo , Enfermedades Renales/prevención & control , Túbulos Renales Proximales/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Serpinas/metabolismo , Obstrucción Ureteral/metabolismo , Vía de Señalización Wnt , Animales , Apoptosis , Proteína Axina/genética , Proteína Axina/metabolismo , Línea Celular , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/prevención & control , Modelos Animales de Enfermedad , Células Epiteliales/patología , Proteínas del Ojo/genética , Fibrosis , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Mediadores de Inflamación/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Túbulos Renales Proximales/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Crecimiento Nervioso/deficiencia , Factores de Crecimiento Nervioso/genética , Estrés Oxidativo , Fenotipo , Serpinas/deficiencia , Serpinas/genética , Factores de Tiempo , Transfección , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/genética , Obstrucción Ureteral/patología
9.
BMC Bioinformatics ; 16 Suppl 13: S10, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26423047

RESUMEN

BACKGROUND: Adapter trimming and removal of duplicate reads are common practices in next-generation sequencing pipelines. Sequencing reads ambiguously mapped to repetitive and low complexity regions can also be problematic for accurate assessment of the biological signal, yet their impact on sequencing data has not received much attention. We investigate how trimming the adapters, removing duplicates, and filtering out reads overlapping low complexity regions influence the significance of biological signal in RNA- and ChIP-seq experiments. METHODS: We assessed the effect of data processing steps on the alignment statistics and the functional enrichment analysis results of RNA- and ChIP-seq data. We compared differentially processed RNA-seq data with matching microarray data on the same patient samples to determine whether changes in pre-processing improved correlation between the two. We have developed a simple tool to remove low complexity regions, RepeatSoaker, available at https://github.com/mdozmorov/RepeatSoaker, and tested its effect on the alignment statistics and the results of the enrichment analyses. RESULTS: Both adapter trimming and duplicate removal moderately improved the strength of biological signals in RNA-seq and ChIP-seq data. Aggressive filtering of reads overlapping with low complexity regions, as defined by RepeatMasker, further improved the strength of biological signals, and the correlation between RNA-seq and microarray gene expression data. CONCLUSIONS: Adapter trimming and duplicates removal, coupled with filtering out reads overlapping low complexity regions, is shown to increase the quality and reliability of detecting biological signals in RNA-seq and ChIP-seq data.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN/genética , Análisis de Secuencia de ARN/métodos , Humanos
10.
J Clin Invest ; 134(8)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466355

RESUMEN

Craniofacial anomalies, especially midline facial defects, are among the most common birth defects in patients and are associated with increased mortality or require lifelong treatment. During mammalian embryogenesis, specific instructions arising at genetic, signaling, and metabolic levels are important for stem cell behaviors and fate determination, but how these functionally relevant mechanisms are coordinated to regulate craniofacial morphogenesis remain unknown. Here, we report that bone morphogenetic protein (BMP) signaling in cranial neural crest cells (CNCCs) is critical for glycolytic lactate production and subsequent epigenetic histone lactylation, thereby dictating craniofacial morphogenesis. Elevated BMP signaling in CNCCs through constitutively activated ACVR1 (ca-ACVR1) suppressed glycolytic activity and blocked lactate production via a p53-dependent process that resulted in severe midline facial defects. By modulating epigenetic remodeling, BMP signaling-dependent lactate generation drove histone lactylation levels to alter essential genes of Pdgfra, thus regulating CNCC behavior in vitro as well as in vivo. These findings define an axis wherein BMP signaling controls a metabolic/epigenetic cascade to direct craniofacial morphogenesis, thus providing a conceptual framework for understanding the interaction between genetic and metabolic cues operative during embryonic development. These findings indicate potential preventive strategies of congenital craniofacial birth defects via modulating metabolic-driven histone lactylation.


Asunto(s)
Cara , Histonas , Animales , Humanos , Epigénesis Genética , Histonas/genética , Histonas/metabolismo , Lactatos/metabolismo , Mamíferos/metabolismo , Morfogénesis , Cresta Neural
11.
Curr Rheumatol Rep ; 15(2): 304, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23307576

RESUMEN

Fibrosis is the principal characteristic of the autoimmune disease known as scleroderma or systemic sclerosis (SSc). Studies published within the last three years suggest central involvement of platelet-derived growth factors (PDGFs) in SSc-associated fibrosis. PDGFs may also be involved in SSc-associated autoimmunity and vasculopathy. The PDGF signaling pathway is well understood and PDGF receptors are expressed on collagen-secreting fibroblasts and on mesenchymal stem and/or progenitor cells that may affect SSc in profound and unexpected ways. Although much work remains before we fully understand how PDGFs are involved in SSc, there is much interest in using PDGF inhibitors as a therapeutic approach to SSc.


Asunto(s)
Factor de Crecimiento Derivado de Plaquetas/fisiología , Esclerodermia Sistémica/fisiopatología , Animales , Benzamidas/uso terapéutico , Fibrosis/tratamiento farmacológico , Fibrosis/metabolismo , Fibrosis/fisiopatología , Humanos , Mesilato de Imatinib , Ratones , Modelos Animales , Piperazinas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/metabolismo
12.
Dev Dyn ; 241(4): 663-74, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22354888

RESUMEN

BACKGROUND: Intercellular communication between epithelial and mesenchymal cells is central to mammalian craniofacial development. ß-catenin is the gateway of canonical Wnt signaling, one of the major evolutionarily conserved cell-cell communication pathways in metazoa. In this study, we report an unexpected stage- and tissue-specific function of ß-catenin during mammalian jaw development. RESULTS: Using a unique mouse genetic tool, we have discovered that epithelial ß-catenin is essential for lower jaw formation, while attenuation of ß-catenin is required for proper upper jaw development. Changes in ß-catenin in vivo alter major epithelial Fgf8, Bmp4, Shh, and Edn1 signals, resulting in partial transcriptional reprogramming of the neural crest-derived mesenchyme, the primary source of jawbones. CONCLUSIONS: The Wnt/ß-catenin signal coordinates expression of multiple epithelial signals and has stage-specific asymmetric functions during mammalian upper and lower jaw development. In addition, these findings suggest that evolutionary changes of the canonical Wnt/ß-catenin signaling pathway may lead to innovation of jaws.


Asunto(s)
Maxilares/embriología , beta Catenina/fisiología , Animales , Epitelio/embriología , Epitelio/fisiología , Regulación del Desarrollo de la Expresión Génica , Maxilares/fisiología , Mesodermo/embriología , Mesodermo/fisiología , Ratones , Especificidad de Órganos , Transducción de Señal , Proteínas Wnt/metabolismo , beta Catenina/genética
13.
bioRxiv ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38045303

RESUMEN

Adipocytes have diverse roles in energy storage and metabolism, inflammation, and tissue repair. Mature adipocytes have been assumed to be terminally differentiated cells. However, recent evidence suggests that adipocytes retain substantial phenotypic plasticity, with potential to dedifferentiate into fibroblast-like cells under physiological and pathological conditions. Here, we develop a two-step lineage tracing approach based on the observation that fibroblasts express platelet-derived growth factor receptor alpha ( Pdgfra ) while adipocytes express Adiponectin ( Adipoq ) but not Pdgfra . Our approach specifically traces Pdgfra + cells that originate from Adipoq + adipocytes. We find many traced adipocytes and fibroblast-like cells surrounding skin wounds, but only a few traced cells localize to the wound center. In agreement with adipocyte plasticity, traced adipocytes incorporate EdU, downregulate Plin1 and PPARγ, and upregulate αSMA. We also investigate the role of potential dedifferentiation signals using constitutively active PDGFRα mutation, Pdgfra knockout, or Tgfbr2 knockout models. We find that PDGF and TGFß signaling both promote dedifferentiation, and PDGFRα does so independently of TGFßR2. These results demonstrate an intersectional genetic approach to trace the hybrid cell phenotype of Pdgfra + adipocytes, which may be important for wound repair, regeneration and fibrosis.

14.
Cell Rep ; 40(7): 111192, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977484

RESUMEN

Fibroblasts differentiate into myofibroblasts by acquiring new contractile function. This is important for tissue repair, but it also contributes to organ fibrosis. Platelet-derived growth factor (PDGF) promotes tissue repair and fibrosis, but the relationship between PDGF and myofibroblasts is unclear. Using mice with lineage tracing linked to PDGF receptor α (PDGFRα) gene mutations, we examine cell fates during skin wound healing. Elevated PDGFRα signaling increases proliferation but unexpectedly delays the fibroblast-to-myofibroblast transition, suggesting that PDGFRα must be downregulated for myofibroblast differentiation. In contrast, deletion of PDGFRα decreases proliferation and myofibroblast differentiation by reducing serum response factor (SRF) nuclear localization. Consequences of SRF deletion resemble PDGFRα deletion, but deletion of two SRF coactivators, MRTFA and MRTFB, specifically eliminates myofibroblasts. Our findings suggest a scenario where PDGFRα signaling initially supports proliferation of fibroblast progenitors to expand their number during early wound healing but, later, PDGFRα downregulation facilitates fibroblast differentiation into myofibroblasts.


Asunto(s)
Miofibroblastos , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Animales , Diferenciación Celular/fisiología , Fibroblastos/metabolismo , Fibrosis , Ratones , Miofibroblastos/patología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Cicatrización de Heridas
15.
Cell Stem Cell ; 28(6): 989-990, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34087159

RESUMEN

Specific cell targeting with one site-specific recombinase is challenging. In this issue of Cell Stem Cell, Han et al. (2021) released a collection of Dre drivers and demonstrate how two recombinases can be combined to improve the cell specificity of lineage tracing and gene inactivation in mice.


Asunto(s)
Integrasas , Recombinasas , Animales , Secuencia de Bases , Movimiento Celular , Integrasas/metabolismo , Ratones , Recombinasas/genética , Recombinasas/metabolismo
16.
Matrix Biol ; 97: 40-57, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33454424

RESUMEN

Little is known about extracellular matrix (ECM) contributions to formation of the earliest cell lineages in the embryo. Here, we show that the proteoglycan versican and glycosaminoglycan hyaluronan are associated with emerging Flk1+ hematoendothelial progenitors at gastrulation. The mouse versican mutant Vcanhdf lacks yolk sac vasculature, with attenuated yolk sac hematopoiesis. CRISPR/Cas9-mediated Vcan inactivation in mouse embryonic stem cells reduced vascular endothelial and hematopoietic differentiation within embryoid bodies, which generated fewer blood colonies, and had an impaired angiogenic response to VEGF165. Hyaluronan was severely depleted in Vcanhdf embryos, with corresponding upregulation of the hyaluronan-depolymerase TMEM2. Conversely, hyaluronan-deficient mouse embryos also had vasculogenic suppression but with increased versican proteolysis. VEGF165 and Indian hedgehog, crucial vasculogenic factors, utilized the versican-hyaluronan matrix, specifically versican chondroitin sulfate chains, for binding. Versican-hyaluronan ECM is thus an obligate requirement for vasculogenesis and primitive hematopoiesis, providing a vasculogenic factor-enriching microniche for Flk1+ progenitors from their origin at gastrulation.


Asunto(s)
Matriz Extracelular/metabolismo , Ácido Hialurónico/metabolismo , Células Madre Embrionarias de Ratones/citología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Versicanos/genética , Animales , Sistemas CRISPR-Cas , Diferenciación Celular , Células Cultivadas , Proteínas Hedgehog/metabolismo , Hematopoyesis , Proteínas de la Membrana/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Nicho de Células Madre , Regulación hacia Arriba , Versicanos/metabolismo
17.
Cell Stem Cell ; 26(5): 707-721.e5, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32229310

RESUMEN

Adipocyte progenitors (APs) express platelet-derived growth factor receptors (PDGFRs), PDGFRα and PDGFRß. Elevated PDGFRα signaling inhibits adipogenesis and promotes fibrosis; however, the function of PDGFRs in APs remains unclear. We combined lineage tracing and functional analyses in a sequential dual-recombinase approach that creates mosaic Pdgfr mutant cells by Cre/lox recombination with a linked Flp/frt reporter to track individual cell fates. Using mosaic lineage labeling, we show that adipocytes are derived from the Pdgfra lineage during postnatal growth and adulthood. In contrast, adipocytes are only derived from the mosaic Pdgfrb lineage during postnatal growth. Functionally, postnatal mosaic deletion of PDGFRα enhances adipogenesis and adult deletion enhances ß3-adrenergic-receptor-induced beige adipocyte formation. Mosaic deletion of PDGFRß also enhances white, brown, and beige adipogenesis. These data show that both PDGFRs are cell-autonomous inhibitors of adipocyte differentiation and implicate downregulation of PDGF signaling as a critical event in the transition from AP to adipocyte.


Asunto(s)
Adipogénesis , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Adipocitos , Adipogénesis/genética , Animales , Diferenciación Celular/genética , Técnicas de Sustitución del Gen , Ratones , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética
18.
EMBO Mol Med ; 12(3): e11021, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-31943786

RESUMEN

Kidney fibrosis is characterized by expansion and activation of platelet-derived growth factor receptor-ß (PDGFR-ß)-positive mesenchymal cells. To study the consequences of PDGFR-ß activation, we developed a model of primary renal fibrosis using transgenic mice with PDGFR-ß activation specifically in renal mesenchymal cells, driving their pathological proliferation and phenotypic switch toward myofibroblasts. This resulted in progressive mesangioproliferative glomerulonephritis, mesangial sclerosis, and interstitial fibrosis with progressive anemia due to loss of erythropoietin production by fibroblasts. Fibrosis induced secondary tubular epithelial injury at later stages, coinciding with microinflammation, and aggravated the progression of hypertensive and obstructive nephropathy. Inhibition of PDGFR activation reversed fibrosis more effectively in the tubulointerstitium compared to glomeruli. Gene expression signatures in mice with PDGFR-ß activation resembled those found in patients. In conclusion, PDGFR-ß activation alone is sufficient to induce progressive renal fibrosis and failure, mimicking key aspects of chronic kidney disease in humans. Our data provide direct proof that fibrosis per se can drive chronic organ damage and establish a model of primary fibrosis allowing specific studies targeting fibrosis progression and regression.


Asunto(s)
Enfermedades Renales , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Fibroblastos/patología , Fibrosis , Humanos , Riñón/patología , Enfermedades Renales/patología , Ratones , Ratones Transgénicos , Miofibroblastos/patología
19.
Cell Rep ; 25(3): 571-584.e5, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332639

RESUMEN

Wnt/ß-catenin signaling is necessary for lymphatic vascular development. Oscillatory shear stress (OSS) enhances Wnt/ß-catenin signaling in cultured lymphatic endothelial cells (LECs) to induce expression of the lymphedema-associated transcription factors GATA2 and FOXC2. However, the mechanisms by which OSS regulates Wnt/ß-catenin signaling and GATA2 and FOXC2 expression are unknown. We show that OSS activates autocrine Wnt/ß-catenin signaling in LECs in vitro. Tissue-specific deletion of Wntless, which is required for the secretion of Wnt ligands, reveals that LECs and vascular smooth muscle cells are complementary sources of Wnt ligands that regulate lymphatic vascular development in vivo. Further, the LEC master transcription factor PROX1 forms a complex with ß-catenin and the TCF/LEF transcription factor TCF7L1 to enhance Wnt/ß-catenin signaling and promote FOXC2 and GATA2 expression in LECs. Thus, our work defines Wnt sources, reveals that PROX1 directs cell fate by acting as a Wnt signaling component, and dissects the mechanisms of PROX1 and Wnt synergy.


Asunto(s)
Células Endoteliales/citología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Músculo Liso Vascular/citología , Proteínas Supresoras de Tumor/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animales , Células Cultivadas , Células Endoteliales/metabolismo , Femenino , Factores de Transcripción Forkhead/metabolismo , Factor de Transcripción GATA2/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Proteína 1 Similar al Factor de Transcripción 7/metabolismo , Vía de Señalización Wnt
20.
Nat Commun ; 6: 7770, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26183159

RESUMEN

Platelet-derived growth factor (PDGF) is a mitogen and chemoattractant for vascular smooth muscle cells (VSMCs). However, the direct effects of PDGF receptor ß (PDGFRß) activation on VSMCs have not been studied in the context of atherosclerosis. Here we present a new mouse model of atherosclerosis with an activating mutation in PDGFRß. Increased PDGFRß signalling induces chemokine secretion and leads to leukocyte accumulation in the adventitia and media of the aorta. Furthermore, PDGFRß(D849V) amplifies and accelerates atherosclerosis in hypercholesterolemic ApoE(-/-) or Ldlr(-/-) mice. Intriguingly, increased PDGFRß signalling promotes advanced plaque formation at novel sites in the thoracic aorta and coronary arteries. However, deletion of the PDGFRß-activated transcription factor STAT1 in VSMCs alleviates inflammation of the arterial wall and reduces plaque burden. These results demonstrate that PDGFRß pathway activation has a profound effect on vascular disease and support the conclusion that inflammation in the outer arterial layers is a driving process for atherosclerosis.


Asunto(s)
Aterosclerosis/genética , Hipercolesterolemia/genética , Placa Aterosclerótica/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Animales , Apolipoproteínas E/genética , Aterosclerosis/metabolismo , Western Blotting , Quimiocinas/metabolismo , Colesterol/metabolismo , Citometría de Flujo , Técnicas de Sustitución del Gen , Hipercolesterolemia/metabolismo , Inmunoprecipitación , Inflamación/metabolismo , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Músculo Liso Vascular , Miocitos del Músculo Liso , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de LDL/genética , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA