RESUMEN
OBJECTIVE: Chondrospheres represent a variant of tissue spheroids biofabricated from chondrocytes. They are already being used in clinical trials for cartilage repair; however, their biomechanical properties have not been systematically investigated yet. The aim of our study was to characterize chondrospheres in long-term in vitro culture conditions for morphometric changes, biomechanical integrity, and their fusion and spreading kinetics. RESULTS: It has been demonstrated that the increase in chondrospheres secant modulus of elasticity is strongly associated with the synthesis and accumulation of extracellular matrix. Additionally, significant interplay has been found between biomechanical properties of tissue spheroids and their fusion kinetics in contrast to their spreading kinetics. CONCLUSIONS: Extracellular matrix is one of the main structural determinants of chondrospheres biomechanical properties during chondrogenic maturation in vitro. The estimation of tissue spheroids' physical behavior in vitro prior to operative treatment can be used to predict and potentially control fusogenic self-assembly process after implantation in vivo.
Asunto(s)
Condrocitos/citología , Condrogénesis/fisiología , Matriz Extracelular/fisiología , Esferoides Celulares/fisiología , Ingeniería de Tejidos , Fenómenos Biomecánicos , Células Cultivadas , Humanos , Técnicas In VitroRESUMEN
Heart failure (HF) is among the socially significant diseases, involving over 2% of the adult population in the developed countries. Diagnostics of the HF severity remains complicated due to the absence of specific symptoms and objective criteria. Here, we present an indicator of the HF severity based on the imaging of tissue parameters around the nailfold capillaries. High resolution nailfold video capillaroscopy was performed to determine the perivascular zone (PZ) size around nailfold capillaries, and 2-photon tomography with fluorescence lifetime imaging was used to investigate PZ composition. We found that the size of PZ around the nailfold capillaries strongly correlates with HF severity. Further investigations using 2-photon tomography demonstrated that PZ corresponds to the border of viable epidermis and it was suggested that the PZ size variations were due to the different amounts of interstitial fluid that potentially further translates in clinically significant oedema. The obtained results allow for the development of a quantitative indicator of oedematous syndrome, which can be used in various applications to monitor the dynamics of interstitial fluid retention. We therefore suggest PZ size measured with nailfold video capillaroscopy as a novel quantitative sensitive non-invasive marker of HF severity.