Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Virol ; 91(19)2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28701402

RESUMEN

Strategies are needed to improve the immunogenicity of HIV-1 envelope (Env) antigens (Ag) for more long-lived, efficacious HIV-1 vaccine-induced B-cell responses. HIV-1 Env gp140 (native or uncleaved molecules) or gp120 monomeric proteins elicit relatively poor B-cell responses which are short-lived. We hypothesized that Env engagement of the CD4 receptor on T-helper cells results in anergic effects on T-cell recruitment and consequently a lack of strong, robust, and durable B-memory responses. To test this hypothesis, we occluded the CD4 binding site (CD4bs) of gp140 by stable cross-linking with a 3-kDa CD4 miniprotein mimetic, serving to block ligation of gp140 on CD4+ T cells while preserving CD4-inducible (CDi) neutralizing epitopes targeted by antibody-dependent cellular cytotoxicity (ADCC) effector responses. Importantly, immunization of rhesus macaques consistently gave superior B-cell (P < 0.001) response kinetics and superior ADCC (P < 0.014) in a group receiving the CD4bs-occluded vaccine compared to those of animals immunized with gp140. Of the cytokines examined, Ag-specific interleukin-4 (IL-4) T-helper enzyme-linked immunosorbent spot (ELISpot) assays of the CD4bs-occluded group increased earlier (P = 0.025) during the inductive phase. Importantly, CD4bs-occluded gp140 antigen induced superior B-cell and ADCC responses, and the elevated B-cell responses proved to be remarkably durable, lasting more than 60 weeks postimmunization.IMPORTANCE Attempts to develop HIV vaccines capable of inducing potent and durable B-cell responses have been unsuccessful until now. Antigen-specific B-cell development and affinity maturation occurs in germinal centers in lymphoid follicles through a critical interaction between B cells and T follicular helper cells. The HIV envelope binds the CD4 receptor on T cells as soluble shed antigen or as antigen-antibody complexes, causing impairment in the activation of these specialized CD4-positive T cells. We proposed that CD4-binding impairment is partly responsible for the relatively poor B-cell responses to HIV envelope-based vaccines. To test this hypothesis, we blocked the CD4 binding site of the envelope antigen and compared it to currently used unblocked envelope protein. We found superior and durable B-cell responses in macaques vaccinated with an occluded CD4 binding site on the HIV envelope antigen, demonstrating a potentially important new direction in future design of new HIV vaccines.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Linfocitos B/inmunología , Antígenos CD4/inmunología , Anticuerpos Anti-VIH/inmunología , Macaca mulatta/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Vacunas contra el SIDA/inmunología , Animales , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Sitios de Unión de Anticuerpos/inmunología , VIH-1/inmunología , Macaca mulatta/virología , Vacunación
2.
J Infect Dis ; 211(6): 947-55, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25234719

RESUMEN

Self-amplifying messenger RNA (mRNA) of positive-strand RNA viruses are effective vectors for in situ expression of vaccine antigens and have potential as a new vaccine technology platform well suited for global health applications. The SAM vaccine platform is based on a synthetic, self-amplifying mRNA delivered by a nonviral delivery system. The safety and immunogenicity of an HIV SAM vaccine encoding a clade C envelope glycoprotein formulated with a cationic nanoemulsion (CNE) delivery system was evaluated in rhesus macaques. The HIV SAM vaccine induced potent cellular immune responses that were greater in magnitude than those induced by self-amplifying mRNA packaged in a viral replicon particle (VRP) or by a recombinant HIV envelope protein formulated with MF59 adjuvant, anti-envelope binding (including anti-V1V2), and neutralizing antibody responses that exceeded those induced by the VRP vaccine. These studies provide the first evidence in nonhuman primates that HIV vaccination with a relatively low dose (50 µg) of formulated self-amplifying mRNA is safe and immunogenic.


Asunto(s)
Vacunas contra el SIDA/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , ARN Viral/inmunología , Vacunas contra el SIDA/administración & dosificación , Inmunidad Adaptativa , Animales , Animales no Consanguíneos , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Cationes , Células Cultivadas , Emulsiones , Infecciones por VIH/inmunología , Inmunidad Celular , Macaca mulatta , Masculino , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
3.
NPJ Vaccines ; 7(1): 126, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302860

RESUMEN

Vaccine development for Plasmodium vivax, an important human relapsing malaria, is lagging behind. In the case of the most deadly human malaria P. falciparum, unprecedented high levels of protection have been obtained by immunization with live sporozoites under accompanying chemoprophylaxis, which prevents the onset of blood-stage malaria. Such an approach has not been fully evaluated for relapsing malaria. Here, in the P. cynomolgi-rhesus macaque model for relapsing malaria, we employ the parasites' natural relapsing phenotype to self-boost the immune response against liver-stage parasites, following a single-shot high-dose live sporozoite vaccination. This approach resulted in sterile protection against homologous sporozoite challenge in three out of four animals in the group that was also exposed for several days to blood stages during primary infection and relapses. One out of four animals in the group that received continuous chemoprophylaxis to abort blood-stage exposure was also protected from sporozoite challenge. Although obtained in a small number of animals as part of a Proof-of-Concept study, these results suggest that limited blood-stage parasite exposure may augment protection in this model. We anticipate our data are a starting point for further research into correlates of protection and extrapolation of the single-shot approach to develop efficacious malaria vaccines against relapsing human malaria.

4.
Proc Natl Acad Sci U S A ; 105(6): 2046-51, 2008 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-18270165

RESUMEN

Each year, approximately five million people die worldwide from putatively vaccine-preventable mucosally transmitted diseases. With respect to mass vaccination campaigns, one strategy to cope with this formidable challenge is aerosol vaccine delivery, which offers potential safety, logistical, and cost-saving advantages over traditional vaccination routes. Additionally, aerosol vaccination may elicit pivotal mucosal immune responses that could contain or eliminate mucosally transmitted pathogens in a preventative or therapeutic vaccine context. In this current preclinical non-human primate investigation, we demonstrate the feasibility of aerosol vaccination with the recombinant poxvirus-based vaccine vectors NYVAC and MVA. Real-time in vivo scintigraphy experiments with radiolabeled, aerosol-administered NYVAC-C (Clade C, HIV-1 vaccine) and MVA-HPV vaccines revealed consistent mucosal delivery to the respiratory tract. Furthermore, aerosol delivery of the vaccines was safe, inducing no vaccine-associated pathology, in particular in the brain and lungs, and was immunogenic. Administration of a DNA-C/NYVAC-C prime/boost regime resulted in both systemic and anal-genital HIV-specific immune responses that were still detectable 5 months after immunization. Thus, aerosol vaccination with NYVAC and MVA vectored vaccines constitutes a tool for large-scale vaccine efforts against mucosally transmitted pathogens.


Asunto(s)
Aerosoles , Vectores Genéticos , Vacunas/administración & dosificación , Animales , Macaca mulatta , Distribución Tisular , Vacunas/efectos adversos , Vacunas/genética , Vacunas/inmunología , Vacunas/farmacocinética
5.
NPJ Vaccines ; 6(1): 55, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33854065

RESUMEN

Plasmodium falciparum apical membrane antigen 1 (PfAMA1) is a candidate malaria vaccine antigen expressed on merozoites and sporozoites. PfAMA1's polymorphic nature impacts vaccine-induced protection. To address polymorphism, three Diversity Covering (DiCo) protein sequences were designed and tested in a staggered phase Ia/b trial. A cohort of malaria-naive adults received PfAMA1-DiCo adjuvanted with Alhydrogel® or GLA-SE and a cohort of malaria-exposed adults received placebo or GLA-SE adjuvanted PfAMA1 DiCo at weeks 0, 4 and 26. IgG and GIA levels measured 4 weeks after the third vaccination are similar in malaria-naive volunteers and placebo-immunised malaria-exposed adults, and have a similar breadth. Vaccination of malaria-exposed adults results in significant antibody level increases to the DiCo variants, but not to naturally occurring PfAMA1 variants. Moreover, GIA levels do not increase following vaccination. Future research will need to focus on stronger adjuvants and/or adapted vaccination regimens, to induce potentially protective responses in the target group of the vaccine.

6.
Viruses ; 13(8)2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34452537

RESUMEN

The post-acute phase of SARS-CoV-2 infection was investigated in rhesus (Macaca mulatta) and cynomolgus macaques (Macaca fascicularis). During the acute phase of infection, SARS-CoV-2 was shed via the nose and throat, and viral RNA was occasionally detected in feces. This phase coincided with a transient change in systemic immune activation. Even after the alleged resolution of the infection, computed tomography (CT) and positron emission tomography (PET)-CT revealed pulmonary lesions and activated tracheobronchial lymph nodes in all animals. Post-mortem histological examination of the lung tissue revealed mostly marginal or resolving minimal lesions that were indicative of SARS-CoV-2 infection. Evidence for SARS-CoV-2-induced histopathology was also found in extrapulmonary tissue samples, such as conjunctiva, cervical, and mesenteric lymph nodes. However, 5-6 weeks after SARS-CoV-2 exposure, upon necropsy, viral RNA was still detectable in a wide range of tissue samples in 50% of the macaques and included amongst others the heart, the respiratory tract and surrounding lymph nodes, salivary gland, and conjunctiva. Subgenomic messenger RNA was detected in the lungs and tracheobronchial lymph nodes, indicative of ongoing virus replication during the post-acute phase. These results could be relevant for understanding the long-term consequences of COVID-19 in humans.


Asunto(s)
COVID-19/patología , COVID-19/virología , Pulmón/patología , SARS-CoV-2/fisiología , Animales , Anticuerpos Antivirales/sangre , COVID-19/inmunología , Citocinas/sangre , Modelos Animales de Enfermedad , Humanos , Pulmón/virología , Ganglios Linfáticos/patología , Ganglios Linfáticos/fisiopatología , Macaca fascicularis , Macaca mulatta , ARN Mensajero/análisis , ARN Viral/análisis , Sistema Respiratorio/patología , Sistema Respiratorio/virología , SARS-CoV-2/inmunología , Replicación Viral
7.
PLoS One ; 10(5): e0126132, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25946071

RESUMEN

The close immunological and physiological resemblance with humans makes non-human primates a valuable model for studying influenza virus pathogenesis and immunity and vaccine efficacy against infection. Although both cynomolgus and rhesus macaques are frequently used in influenza virus research, a direct comparison of susceptibility to infection and disease has not yet been performed. In the current study a head-to-head comparison was made between these species, by using a recently described swine-origin pandemic H1N1 strain, A/Mexico/InDRE4487/2009. In comparison to rhesus macaques, cynomolgus macaques developed significantly higher levels of virus replication in the upper airways and in the lungs, involving both peak level and duration of virus production, as well as higher increases in body temperature. In contrast, clinical symptoms, including respiratory distress, were more easily observed in rhesus macaques. Expression of sialyl-α-2,6-Gal saccharides, the main receptor for human influenza A viruses, was 50 to 73 times more abundant in trachea and bronchus of cynomolgus macaques relative to rhesus macaques. The study also shows that common marmosets, a New World non-human primate species, are susceptible to infection with pandemic H1N1. The study results favor the cynomolgus macaque as model for pandemic H1N1 influenza virus research because of the more uniform and high levels of virus replication, as well as temperature increases, which may be due to a more abundant expression of the main human influenza virus receptor in the trachea and bronchi.


Asunto(s)
Callithrix/virología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Macaca fascicularis/inmunología , Macaca fascicularis/virología , Macaca mulatta/inmunología , Macaca mulatta/virología , Animales , Quimiocinas/sangre , Citocinas/sangre , Modelos Animales de Enfermedad , Fiebre/etiología , Especificidad del Huésped , Interacciones Huésped-Patógeno/inmunología , Humanos , Mediadores de Inflamación/sangre , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/epidemiología , Gripe Humana/inmunología , Gripe Humana/virología , Pulmón/patología , Masculino , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Pandemias , Receptores Virales/metabolismo , Porcinos/virología , Carga Viral , Virulencia/inmunología , Replicación Viral
8.
AIDS ; 18(1): 25-36, 2004 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-15090826

RESUMEN

OBJECTIVE: To develop a novel SIV-CCR5 receptor vaccine strategy that will protect macaques from SHIV infection by the vaginal mucosal route. DESIGN: The rationale for this strategy is that humans who express the homozygous delta32 CCR5 mutation and the associated upregulation of CC chemokines, the down-modulation of cell-surface expression of CCR5 and antibodies to CCR5 are protected against HIV infection. METHODS: A vaccine was prepared consisting of three extracellular peptides of CCR5, an N-terminal HIV gp120 fragment generated in transgenic plants and recombinant SIV p27. These were linked to the 70 000 Mr microbial heat shock protein (HSP70) carrier. The vaccine was administered (x3) either by the vaginal mucosal route or by targeting the proximity of the draining iliac lymph nodes. RESULTS: Serum and vaginal fluid IgG and IgA antibodies, IL-2 and IFN-gamma-producing cells, and macrophage-inflammatory protein (MIP) 1beta and MIP-1alpha (CCL4 and CCL3) were significantly raised in immunized macaques (P = 0.01-0.05). Vaginal challenge with SHIV(89.6P) infected all macaques, but sequential analysis over 24 weeks showed a significant variation in viral loads between the animals (P = 0.05). Whereas SHIV(89.6P) persisted in the four unimmunized macaques, in five of the eight immunized macaques the virus was cleared or became undetectable by reverse transcriptase-polymerase chain reaction. The CD4 cell counts in the immunized macaques were significantly higher than those in unimmunized animals (P < 0.05). CONCLUSION: An immunization strategy that targets both the virus and its CCR5 receptor has significantly inhibited SHIV(89.6P) infection and may serve as a novel strategy in the prevention of HIV transmission.


Asunto(s)
Vacunas contra el SIDA/uso terapéutico , Receptores CCR5/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Animales , Anticuerpos Antivirales/análisis , Biomarcadores/análisis , Recuento de Linfocito CD4 , Quimiocina CCL5/análisis , Femenino , Infecciones por VIH/inmunología , Inmunoglobulina G/análisis , Inmunoglobulina M/análisis , Interferón gamma/análisis , Interleucina-2/análisis , Ganglios Linfáticos/inmunología , Macaca mulatta , Proteínas Inflamatorias de Macrófagos/análisis , Membrana Mucosa/inmunología , Receptores CCR5/análisis , Linfocitos T/inmunología , Vagina/inmunología , Carga Viral
9.
PLoS One ; 9(11): e112568, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25392925

RESUMEN

The mosquito-borne West Nile virus (WNV) causes human and animal disease with outbreaks in several parts of the world including North America, the Mediterranean countries, Central and East Europe, the Middle East, and Africa. Particularly in elderly people and individuals with an impaired immune system, infection with WNV can progress into a serious neuroinvasive disease. Currently, no treatment or vaccine is available to protect humans against infection or disease. The goal of this study was to develop a WNV-vaccine that is safe to use in these high-risk human target populations. We performed a vaccine efficacy study in non-human primates using the contemporary, pathogenic European WNV genotype 1a challenge strain, WNV-Ita09. Two vaccine strategies were evaluated in rhesus macaques (Macaca mulatta) using recombinant soluble WNV envelope (E) ectodomain adjuvanted with Matrix-M, either with or without DNA priming. The DNA priming immunization was performed with WNV-DermaVir nanoparticles. Both vaccination strategies successfully induced humoral and cellular immune responses that completely protected the macaques against the development of viremia. In addition, the vaccine was well tolerated by all animals. Overall, The WNV E protein adjuvanted with Matrix-M is a promising vaccine candidate for a non-infectious WNV vaccine for use in humans, including at-risk populations.


Asunto(s)
Fiebre del Nilo Occidental/prevención & control , Vacunas contra el Virus del Nilo Occidental/uso terapéutico , Virus del Nilo Occidental/clasificación , Animales , Anticuerpos Antivirales/sangre , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Culicidae , Europa (Continente) , Inmunidad Celular , Inmunidad Humoral , Inyecciones Intradérmicas , Interferón gamma/inmunología , Macaca mulatta , Estructura Terciaria de Proteína , Proteínas del Envoltorio Viral/inmunología , Carga Viral , Viremia/inmunología
10.
Virology ; 382(2): 217-25, 2008 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-18947849

RESUMEN

Immune correlates of vaccine protection from HIV-1 infection would provide important milestones to guide HIV-1 vaccine development. In a proof of concept study using mucosal priming and systemic boosting, the titer of neutralizing antibodies in sera was found to correlate with protection of mucosally exposed rhesus macaques from SHIV infection. Mucosal priming consisted of two sequential immunizations at 12-week intervals with replicating host range mutants of adenovirus type 5 (Ad5hr) expressing the HIV-1(89.6p) env gene. Following boosting with either heterologous recombinant protein or alphavirus replicons at 12-week intervals animals were intrarectally exposed to infectious doses of the CCR5 tropic SHIV(SF162p4). Heterologous mucosal prime systemic boost immunization elicited neutralizing antibodies (Nabs), antibody-dependent cytotoxicity (ADCC), and specific patterns of antibody binding to envelope peptides. Vaccine induced protection did not correlate with the type of boost nor T-cell responses, but rather with the Nab titer prior to exposure.


Asunto(s)
Vacunas contra el SIDA/administración & dosificación , Anticuerpos Antivirales/biosíntesis , Anticuerpos Anti-VIH/biosíntesis , VIH-1/inmunología , Vacunas contra el SIDAS/administración & dosificación , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Secuencia de Bases , ADN Viral/análisis , ADN Viral/genética , Femenino , Genes env , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , Infecciones por VIH/virología , VIH-1/genética , Inmunidad Celular , Inmunidad Mucosa , Esquemas de Inmunización , Inmunización Secundaria , Macaca mulatta , Masculino , Pruebas de Neutralización , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Viremia/inmunología , Viremia/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA