Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 185(17): 3169-3185.e20, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35908548

RESUMEN

Mice deficient for all ten-eleven translocation (TET) genes exhibit early gastrulation lethality. However, separating cause and effect in such embryonic failure is challenging. To isolate cell-autonomous effects of TET loss, we used temporal single-cell atlases from embryos with partial or complete mutant contributions. Strikingly, when developing within a wild-type embryo, Tet-mutant cells retain near-complete differentiation potential, whereas embryos solely comprising mutant cells are defective in epiblast to ectoderm transition with degenerated mesoderm potential. We map de-repressions of early epiblast factors (e.g., Dppa4 and Gdf3) and failure to activate multiple signaling from nascent mesoderm (Lefty, FGF, and Notch) as likely cell-intrinsic drivers of TET loss phenotypes. We further suggest loss of enhancer demethylation as the underlying mechanism. Collectively, our work demonstrates an unbiased approach for defining intrinsic and extrinsic embryonic gene function based on temporal differentiation atlases and disentangles the intracellular effects of the demethylation machinery from its broader tissue-level ramifications.


Asunto(s)
Gastrulación , Mesodermo , Animales , Diferenciación Celular/genética , Embrión de Mamíferos/metabolismo , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteínas Nucleares/metabolismo , Transducción de Señal
2.
Cell ; 184(11): 2825-2842.e22, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33932341

RESUMEN

Mouse embryonic development is a canonical model system for studying mammalian cell fate acquisition. Recently, single-cell atlases comprehensively charted embryonic transcriptional landscapes, yet inference of the coordinated dynamics of cells over such atlases remains challenging. Here, we introduce a temporal model for mouse gastrulation, consisting of data from 153 individually sampled embryos spanning 36 h of molecular diversification. Using algorithms and precise timing, we infer differentiation flows and lineage specification dynamics over the embryonic transcriptional manifold. Rapid transcriptional bifurcations characterize the commitment of early specialized node and blood cells. However, for most lineages, we observe combinatorial multi-furcation dynamics rather than hierarchical transcriptional transitions. In the mesoderm, dozens of transcription factors combinatorially regulate multifurcations, as we exemplify using time-matched chimeric embryos of Foxc1/Foxc2 mutants. Our study rejects the notion of differentiation being governed by a series of binary choices, providing an alternative quantitative model for cell fate acquisition.


Asunto(s)
Desarrollo Embrionario/fisiología , Gastrulación/fisiología , Animales , Diferenciación Celular , Linaje de la Célula , Embrión de Mamíferos/citología , Desarrollo Embrionario/genética , Femenino , Expresión Génica , Ratones/embriología , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones , Embarazo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
3.
Nature ; 634(8034): 652-661, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39294373

RESUMEN

The developing placenta, which in mice originates through the extraembryonic ectoderm (ExE), is essential for mammalian embryonic development. Yet unbiased characterization of the differentiation dynamics of the ExE and its interactions with the embryo proper remains incomplete. Here we develop a temporal single-cell model of mouse gastrulation that maps continuous and parallel differentiation in embryonic and extraembryonic lineages. This is matched with a three-way perturbation approach to target signalling from the embryo proper, the ExE alone, or both. We show that ExE specification involves early spatial and transcriptional bifurcation of uncommitted ectoplacental cone cells and chorion progenitors. Early BMP4 signalling from chorion progenitors is required for proper differentiation of uncommitted ectoplacental cone cells and later for their specification towards trophoblast giant cells. We also find biphasic regulation by BMP4 in the embryo. The early ExE-originating BMP4 signal is necessary for proper mesoendoderm bifurcation and for allantois and primordial germ cell specification. However, commencing at embryonic day 7.5, embryo-derived BMP4 restricts the primordial germ cell pool size by favouring differentiation of their extraembryonic mesoderm precursors towards an allantois fate. ExE and embryonic tissues are therefore entangled in time, space and signalling axes, highlighting the importance of their integrated understanding and modelling in vivo and in vitro.


Asunto(s)
Alantoides , Proteína Morfogenética Ósea 4 , Embrión de Mamíferos , Desarrollo Embrionario , Animales , Femenino , Masculino , Ratones , Embarazo , Proteína Morfogenética Ósea 4/metabolismo , Diferenciación Celular , Linaje de la Célula , Corion/citología , Corion/metabolismo , Corion/embriología , Ectodermo/citología , Ectodermo/metabolismo , Ectodermo/embriología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Placenta/metabolismo , Placenta/citología , Placenta/embriología , Transducción de Señal , Análisis de la Célula Individual , Factores de Tiempo , Trofoblastos/citología , Trofoblastos/metabolismo , Alantoides/citología , Alantoides/embriología , Alantoides/metabolismo
4.
Nat Commun ; 14(1): 3791, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365167

RESUMEN

Eviction of histones from nucleosomes and their exchange with newly synthesized or alternative variants is a central epigenetic determinant. Here, we define the genome-wide occupancy and exchange pattern of canonical and non-canonical histone variants in mouse embryonic stem cells by genetically encoded exchange sensors. While exchange of all measured variants scales with transcription, we describe variant-specific associations with transcription elongation and Polycomb binding. We found considerable exchange of H3.1 and H2B variants in heterochromatin and repeat elements, contrasting the occupancy and little exchange of H3.3 in these regions. This unexpected association between H3.3 occupancy and exchange of canonical variants is also evident in active promoters and enhancers, and further validated by reduced H3.1 dynamics following depletion of H3.3-specific chaperone, HIRA. Finally, analyzing transgenic mice harboring H3.1 or H3.3 sensors demonstrates the vast potential of this system for studying histone exchange and its impact on gene expression regulation in vivo.


Asunto(s)
Histonas , Células Madre Embrionarias de Ratones , Animales , Ratones , Histonas/genética , Histonas/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Nucleosomas/genética , Secuencias Reguladoras de Ácidos Nucleicos , Regulación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA