Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 296: 100291, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33453283

RESUMEN

Androglobin (ADGB) represents the latest addition to the globin superfamily in metazoans. The chimeric protein comprises a calpain domain and a unique circularly permutated globin domain. ADGB expression levels are most abundant in mammalian testis, but its cell-type-specific expression, regulation, and function have remained unexplored. Analyzing bulk and single-cell mRNA-Seq data from mammalian tissues, we found that-in addition to the testes-ADGB is prominently expressed in the female reproductive tract, lungs, and brain, specifically being associated with cell types forming motile cilia. Correlation analysis suggested coregulation of ADGB with FOXJ1, a crucial transcription factor of ciliogenesis. Investigating the transcriptional regulation of the ADGB gene, we characterized its promoter using epigenomic datasets, exogenous promoter-dependent luciferase assays, and CRISPR/dCas9-VPR-mediated activation approaches. Reporter gene assays revealed that FOXJ1 indeed substantially enhanced luciferase activity driven by the ADGB promoter. ChIP assays confirmed binding of FOXJ1 to the endogenous ADGB promoter region. We dissected the minimal sequence required for FOXJ1-dependent regulation and fine mapped the FOXJ1 binding site to two evolutionarily conserved regions within the ADGB promoter. FOXJ1 overexpression significantly increased endogenous ADGB mRNA levels in HEK293 and MCF-7 cells. Similar results were observed upon RFX2 overexpression, another key transcription factor in ciliogenesis. The complex transcriptional regulation of the ADGB locus was illustrated by identifying a distal enhancer, responsible for synergistic regulation by RFX2 and FOXJ1. Finally, cell culture studies indicated an ADGB-dependent increase in the number of ciliated cells upon overexpression of the full-length protein, confirming a ciliogenesis-associated role of ADGB in mammals.


Asunto(s)
Proteínas de Unión a Calmodulina/genética , Cilios/genética , Factores de Transcripción Forkhead/genética , Globinas/genética , Factores de Transcripción del Factor Regulador X/genética , Transcriptoma , Animales , Sitios de Unión , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Proteínas de Unión a Calmodulina/metabolismo , Bovinos , Cilios/metabolismo , Elementos de Facilitación Genéticos , Femenino , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ontología de Genes , Globinas/metabolismo , Células HEK293 , Células HeLa , Humanos , Pulmón/citología , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Células MCF-7 , Masculino , Anotación de Secuencia Molecular , Ovario/citología , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Transcripción del Factor Regulador X/metabolismo , Análisis de Secuencia de ARN , Testículo/citología , Testículo/crecimiento & desarrollo , Testículo/metabolismo
2.
Haematologica ; 105(12): 2774-2784, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33256376

RESUMEN

While it is well-established that distal hypoxia response elements (HREs) regulate hypoxia-inducible factor (HIF) target genes such as erythropoietin (Epo), an interplay between multiple distal and proximal (promoter) HREs has not been described so far. Hepatic Epo expression is regulated by a HRE located downstream of the EPO gene, but this 3' HRE is dispensable for renal EPO gene expression. We previously identified a 5' HRE and could show that both HREs direct exogenous reporter gene expression. Here, we show that whereas in hepatic cells the 3' but not the 5' HRE is required, in neuronal cells both the 5' and 3' HREs contribute to endogenous Epo induction. Moreover, two novel putative HREs were identified in the EPO promoter. In hepatoma cells HIF interacted mainly with the distal 3' HRE, but in neuronal cells HIF most strongly bound the promoter, to a lesser extent the 3' HRE, and not at all the 5' HRE. Interestingly, mutation of either of the two distal HREs abrogated HIF binding to the 3' and promoter HREs. These results suggest that a canonical functional HRE can recruit multiple, not necessarily HIF, transcription factors to mediate HIF binding to different distant HREs in an organ-specific manner.


Asunto(s)
Eritropoyetina , Elementos de Respuesta , Hipoxia de la Célula , Eritropoyetina/genética , Expresión Génica , Humanos , Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia
3.
Kidney Int ; 95(2): 375-387, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30502050

RESUMEN

Erythropoietin (Epo) is essential for erythropoiesis and is mainly produced by the fetal liver and the adult kidney following hypoxic stimulation. Epo regulation is commonly studied in hepatoma cell lines, but differences in Epo regulation between kidney and liver limit the understanding of Epo dysregulation in polycythaemia and anaemia. To overcome this limitation, we have generated a novel transgenic mouse model expressing Cre recombinase specifically in the active fraction of renal Epo-producing (REP) cells. Crossing with reporter mice confirmed the inducible and highly specific tagging of REP cells, located in the corticomedullary border region where there is a steep drop in oxygen bioavailability. A novel method was developed to selectively grow primary REP cells in culture and to generate immortalized clonal cell lines, called fibroblastoid atypical interstitial kidney (FAIK) cells. FAIK cells show very early hypoxia-inducible factor (HIF)-2α induction, which precedes Epo transcription. Epo induction in FAIK cells reverses rapidly despite ongoing hypoxia, suggesting a cell autonomous feedback mechanism. In contrast, HIF stabilizing drugs resulted in chronic Epo induction in FAIK cells. RNA sequencing of three FAIK cell lines derived from independent kidneys revealed a high degree of overlap and suggests that REP cells represent a unique cell type with properties of pericytes, fibroblasts, and neurons, known as telocytes. These novel cell lines may be helpful to investigate myofibroblast differentiation in chronic kidney disease and to elucidate the molecular mechanisms of HIF stabilizing drugs currently in phase III studies to treat anemia in end-stage kidney disease.


Asunto(s)
Eritropoyetina/metabolismo , Telocitos/patología , Factores de Transcripción/metabolismo , Anemia/etiología , Anemia/patología , Animales , Hipoxia de la Célula , Línea Celular , Eritropoyetina/genética , Retroalimentación Fisiológica , Riñón/citología , Riñón/patología , Ratones , Ratones Transgénicos , Cultivo Primario de Células , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/patología , Telocitos/metabolismo
4.
Redox Biol ; 37: 101687, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32863222

RESUMEN

Vertebrate hemoglobin (Hb) and myoglobin (Mb) were among the first proteins whose structures and sequences were determined over 50 years ago. In the subsequent pregenomic period, numerous related proteins came to light in plants, invertebrates and bacteria, that shared the myoglobin fold, a signature sequence motif characteristic of a 3-on-3 α-helical sandwich. Concomitantly, eukaryote and bacterial globins with a truncated 2-on-2 α-helical fold were discovered. Genomic information over the last 20 years has dramatically expanded the list of known globins, demonstrating their existence in a limited number of archaeal genomes, a majority of bacterial genomes and an overwhelming majority of eukaryote genomes. In vertebrates, 6 additional globin types were identified, namely neuroglobin (Ngb), cytoglobin (Cygb), globin E (GbE), globin X (GbX), globin Y (GbY) and androglobin (Adgb). Furthermore, functions beyond the familiar oxygen transport and storage have been discovered within the vertebrate globin family, including NO metabolism, peroxidase activity, scavenging of free radicals, and signaling functions. The extension of the knowledge on globin functions suggests that the original roles of bacterial globins must have been enzymatic, involved in defense against NO toxicity, and perhaps also as sensors of O2, regulating taxis away or towards high O2 concentrations. In this review, we aimed to discuss the evolution and remarkable functional diversity of vertebrate globins with particular focus on the variety of non-canonical expression sites of mammalian globins and their according impressive variability of atypical functions.


Asunto(s)
Evolución Molecular , Genómica , Globinas , Animales , Citoglobina , Globinas/genética , Neuroglobina , Oxígeno , Vertebrados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA