Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 187(19): 5282-5297.e20, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39168125

RESUMEN

Biomolecular condensates assemble in living cells through phase separation and related phase transitions. An underappreciated feature of these dynamic molecular assemblies is that they form interfaces with other cellular structures, including membranes, cytoskeleton, DNA and RNA, and other membraneless compartments. These interfaces are expected to give rise to capillary forces, but there are few ways of quantifying and harnessing these forces in living cells. Here, we introduce viscoelastic chromatin tethering and organization (VECTOR), which uses light-inducible biomolecular condensates to generate capillary forces at targeted DNA loci. VECTOR can be utilized to programmably reposition genomic loci on a timescale of seconds to minutes, quantitatively revealing local heterogeneity in the viscoelastic material properties of chromatin. These synthetic condensates are built from components that naturally form liquid-like structures in living cells, highlighting the potential role for native condensates to generate forces and do work to reorganize the genome and impact chromatin architecture.


Asunto(s)
Cromatina , ADN , Elasticidad , Cromatina/metabolismo , Cromatina/química , ADN/metabolismo , ADN/química , Humanos , Viscosidad , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Sitios Genéticos
2.
Mol Cell ; 83(17): 3095-3107.e9, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37683610

RESUMEN

The nucleolus is the largest biomolecular condensate and facilitates transcription, processing, and assembly of ribosomal RNA (rRNA). Although nucleolar function is thought to require multiphase liquid-like properties, nucleolar fluidity and its connection to the highly coordinated transport and biogenesis of ribosomal subunits are poorly understood. Here, we use quantitative imaging, mathematical modeling, and pulse-chase nucleotide labeling to examine nucleolar material properties and rRNA dynamics. The mobility of rRNA is several orders of magnitude slower than that of nucleolar proteins, with rRNA steadily moving away from the transcriptional sites in a slow (∼1 Å/s), radially directed fashion. This constrained but directional mobility, together with polymer physics-based calculations, suggests that nascent rRNA forms an entangled gel, whose constant production drives outward flow. We propose a model in which progressive maturation of nascent rRNA reduces its initial entanglement, fluidizing the nucleolar periphery to facilitate the release of assembled pre-ribosomal particles.


Asunto(s)
ARN Ribosómico , ARN , ARN/genética , ARN Ribosómico/genética , Condensados Biomoleculares , Nucléolo Celular/genética , Proteínas Nucleares/genética
3.
Mol Biol Cell ; 35(6): ar88, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656803

RESUMEN

Nuclear compartments form via biomolecular phase separation, mediated through multivalent properties of biomolecules concentrated within condensates. Certain compartments are associated with specific chromatin regions, including transcriptional initiation condensates, which are composed of transcription factors and transcriptional machinery, and form at acetylated regions including enhancer and promoter loci. While protein self-interactions, especially within low-complexity and intrinsically disordered regions, are known to mediate condensation, the role of substrate-binding interactions in regulating the formation and function of biomolecular condensates is underexplored. Here, utilizing live-cell experiments in parallel with coarse-grained simulations, we investigate how chromatin interaction of the transcriptional activator BRD4 modulates its condensate formation. We find that both kinetic and thermodynamic properties of BRD4 condensation are affected by chromatin binding: nucleation rate is sensitive to BRD4-chromatin interactions, providing an explanation for the selective formation of BRD4 condensates at acetylated chromatin regions, and thermodynamically, multivalent acetylated chromatin sites provide a platform for BRD4 clustering below the concentration required for off-chromatin condensation. This provides a molecular and physical explanation of the relationship between nuclear condensates and epigenetically modified chromatin that results in their mutual spatiotemporal regulation, suggesting that epigenetic modulation is an important mechanism by which the cell targets transcriptional condensates to specific chromatin loci.


Asunto(s)
Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular , Cromatina , Proteínas Nucleares , Factores de Transcripción , Humanos , Acetilación , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica , Termodinámica , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA