Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
J Am Chem Soc ; 146(15): 10407-10417, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38572973

RESUMEN

Nitroaromatic compounds are major constituents of the brown carbon aerosol particles in the troposphere that absorb near-ultraviolet (UV) and visible solar radiation and have a profound effect on the Earth's climate. The primary sources of brown carbon include biomass burning, forest fires, and residential burning of biofuels, and an important secondary source is photochemistry in aqueous cloud and fog droplets. Nitrobenzene is the smallest nitroaromatic molecule and a model for the photochemical behavior of larger nitroaromatic compounds. Despite the obvious importance of its droplet photochemistry to the atmospheric environment, there have not been any detailed studies of the ultrafast photochemical dynamics of nitrobenzene in aqueous solution. Here, we combine femtosecond transient absorption spectroscopy, time-resolved infrared spectroscopy, and quantum chemistry calculations to investigate the primary steps following the near-UV (λ ≥ 340 nm) photoexcitation of aqueous nitrobenzene. To understand the role of the surrounding water molecules in the photochemical dynamics of nitrobenzene, we compare the results of these investigations with analogous measurements in solutions of methanol, acetonitrile, and cyclohexane. We find that vibrational energy transfer to the aqueous environment quenches internal excitation, and therefore, unlike the gas phase, we do not observe any evidence for formation of photoproducts on timescales up to 500 ns. We also find that hydrogen bonding between nitrobenzene and surrounding water molecules slows the S1/S0 internal conversion process.

2.
Phys Chem Chem Phys ; 26(16): 12725-12737, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38616653

RESUMEN

C-I bond extension and fission following ultraviolet (UV, 262 nm) photoexcitation of 2- and 3-iodothiophene is studied using ultrafast time-resolved extreme ultraviolet (XUV) ionization in conjunction with velocity map ion imaging. The photoexcited molecules and eventual I atom products are probed by site-selective ionization at the I 4d edge using intense XUV pulses, which induce multiple charges initially localized to the iodine atom. At C-I separations below the critical distance for charge transfer (CT), charge can redistribute around the molecule leading to Coulomb explosion and charged fragments with high kinetic energy. At greater C-I separations, beyond the critical distance, CT is no longer possible and the measured kinetic energies of the charged iodine atoms report on the neutral dissociation process. The time and momentum resolved measurements allow determination of the timescales and the respective product momentum and kinetic energy distributions for both isomers, which are interpreted in terms of rival 'direct' and 'indirect' dissociation pathways. The measurements are compared with a classical over the barrier model, which reveals that the onset of the indirect dissociation process is delayed by ∼1 ps relative to the direct process. The kinetics of the two processes show no discernible difference between the two parent isomers, but the branching between the direct and indirect dissociation channels and the respective product momentum distributions show isomer dependencies. The greater relative yield of indirect dissociation products from 262 nm photolysis of 3-iodothiophene (cf. 2-iodothiophene) is attributed to the different partial cross-sections for (ring-centred) π∗ ← π and (C-I bond localized) σ∗ ← (n/π) excitation in the respective parent isomers.

3.
J Phys Chem A ; 128(22): 4548-4560, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38713032

RESUMEN

We present results from a covariance ion imaging study, which employs extensive filtering, on the relationship between fragment momenta to gain deeper insight into photofragmentation dynamics. A new data analysis approach is introduced that considers the momentum partitioning between the fragments of the breakup of a molecular polycation to disentangle concurrent fragmentation channels, which yield the same ion species. We exploit this approach to examine the momentum exchange relationship between the products, which provides direct insight into the dynamics of molecular fragmentation. We apply these techniques to extensively characterize the dissociation of 1-iodopropane and 2-iodopropane dications prepared by site-selective ionization of the iodine atom using extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Our assignments are supported by classical simulations, using parameters largely obtained directly from the experimental data.

4.
J Phys Chem A ; 127(51): 10775-10788, 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38096377

RESUMEN

Thermally activated delayed fluorescence (TADF) emitters are molecules of interest as homogeneous organic photocatalysts (OPCs) for photoredox chemistry. Here, three classes of OPC candidates are studied in dichloromethane (DCM) or N,N-dimethylformamide (DMF) solutions, using transient absorption spectroscopy and time-resolved fluorescence spectroscopy. These OPCs are benzophenones with either carbazole (2Cz-BP and 2tCz-BP) or phenoxazine/phenothiazine (2PXZ-BP and 2PTZ-BP) appended groups and the dicyanobenzene derivative 4DP-IPN. Dual lifetimes of the S1 state populations are observed, consistent with reverse intersystem crossing (RISC) and TADF emission. Example fluorescence lifetimes in DCM are (5.18 ± 0.01) ns and (6.22 ± 1.27) µs for 2Cz-BP, (1.38 ± 0.01) ns and (0.32 ± 0.01) µs for 2PXZ-BP, and (2.97 ± 0.01) ns and (62.0 ± 5.8) µs for 4DP-IPN. From ground state bleach recoveries and time-correlated single photon counting measurements, triplet quantum yields in DCM are estimated to be 0.62 ± 0.16, 0.04 ± 0.01, and 0.83 ± 0.02 for 2Cz-BP, 2PXZ-BP, and 4DP-IPN, respectively. 4DP-IPN displays similar photophysical behavior to the previously studied OPC 4Cz-IPN. Independent of the choice of solvent, 4DP-IPN, 2Cz-BP, and 2tCz-BP are shown to be TADF emitters, whereas emission by 2PXZ-BP and 2PTZ-BP depends on the molecular environment, with TADF emission enhanced in aggregates compared to monomers. Behavior of this type is representative of aggregation-induced emission luminogens (AIEgens).

5.
J Am Chem Soc ; 144(21): 9330-9343, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35580274

RESUMEN

The photoexcitation of α-diazocarbonyl compounds produces singlet carbene intermediates that react with nucleophilic solvent molecules to form ylides. The zwitterionic nature of these newly formed ylides induces rapid changes in their interactions with the surrounding solvent. Here, ultrafast time-resolved infrared absorption spectroscopy is used to study the ylide-forming reactions of singlet carbene intermediates from the 270 nm photoexcitation of ethyl diazoacetate in various solvents and the changes in the subsequent ylide-solvent interactions. The results provide direct spectroscopic observation of the competition between ylide formation and C-H insertion in reactions of the singlet carbene with nucleophilic solvent molecules. We further report the specific solvation dynamics of the tetrahydrofuran (THF)-derived ylide (with a characteristic IR absorption band at 1636 cm-1) by various hydrogen-bond donors and the coordination by lithium cations. Hydrogen-bonded ylide bands shift to a lower wavenumber by -19 cm-1 for interactions with ethanol, -14 cm-1 for chloroform, -10 cm-1 for dichloromethane, -9 cm-1 for acetonitrile or cyclohexane, and -16 cm-1 for Li+ coordination, allowing the time evolution of the ylide-solvent interactions to be tracked. The hydrogen-bonded ylide bands grow with rate coefficients that are close to the diffusional limit. We further characterize the specific interactions of ethanol with the THF-derived ylide using quantum chemical (MP2) calculations and DFT-based atom-centered density matrix propagation trajectories, which show preferential coordination to the α-carbonyl group. This coordination alters the hybridization character of the ylidic carbon atom, with the greatest change toward sp2 character found for lithium-ion coordination.


Asunto(s)
Hidrógeno , Litio , Etanol , Enlace de Hidrógeno , Solventes/química
6.
Acc Chem Res ; 54(23): 4383-4394, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34842416

RESUMEN

Photochemical reactions are increasingly being used for chemical and materials synthesis, for example, in photoredox catalysis, and generally involve photoexcitation of molecular chromophores dissolved in a liquid solvent. The choice of solvent influences the outcomes of the photochemistry because solute-solvent interactions modify the energies of and crossings between electronic states of the chromophores, and they affect the evolving structures of the photoexcited molecules. Ultrafast laser spectroscopy methods with femtosecond to picosecond time resolution can resolve the dynamics of these photoexcited molecules as they undergo structural and electronic changes, relax back to the ground state, dissipate their excess internal energy to the surrounding solvent, or undergo photochemical reactions. In this Account, we illustrate how experimental studies using ultrafast lasers can reveal the influences that different solvents or cosolutes exert on the photoinduced nonadiabatic dynamics of internal conversion and intersystem crossing in nonradiative relaxation pathways. Although the environment surrounding a solute molecule is rapidly changing, with fluctuations in the coordination to neighboring solvent molecules occurring on femtosecond or picosecond time scales, we show that it is possible to photoexcite selectively only those molecular chromophores transiently experiencing specific solute-solvent interactions such as intermolecular hydrogen bonding.The effects of different solvation environments on the photodynamics are illustrated using four selected examples of photochemical processes in which the solvent has a marked effect on the outcomes. We first consider two aromatic carbonyl compounds, benzophenone and acetophenone, which are known to undergo fast intersystem crossing to populate the first excited triplet state on time scales of a few picoseconds. We show that the nonadiabatic excited-state dynamics are modified by transient hydrogen bonding of the carbonyl group to a protic solvent or by coordination to a metal cation cosolute. We then examine how different solvents modify the competition between two alternative relaxation pathways in a photoexcited UVA-sunscreen molecule, diethylamino hydroxybenzoyl hexyl benzoate (DHHB). This relaxation back to the ground electronic state is an essential part of the effective operation of the sunscreen compound, but the dynamics are sensitive to the surrounding environment. Finally, we consider how solvents of different polarity affect the energies and lifetimes of excited states with locally excited or charge-transfer character in heterocyclic organic compounds used as excited-state electron donors for photoredox catalysis. With these and other examples, we seek to develop a molecular level understanding of how the choice of solution environment might be used to control the outcomes of photochemical reactions.

7.
Phys Chem Chem Phys ; 24(37): 22699-22709, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36106844

RESUMEN

We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot-1). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals.

8.
J Phys Chem A ; 126(39): 6934-6943, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36148486

RESUMEN

Although ultraviolet (UV)-induced photochemical cleavage of carbon-halogen bonds in gaseous halocarbons is mostly homolytic, the photolysis of chlorobenzene in solution has been proposed to produce a phenyl cation, c-C6H5+, which is a highly reactive intermediate of potential use in chemical synthesis and N2 activation. Any evidence for such a route to phenyl cations is indirect, with uncertainty remaining about the possible mechanism. Here, ultrafast transient absorption spectroscopy of UV-excited (λ = 240 and 270 nm) chlorobenzene solutions in fluorinated (perfluorohexane) and protic (ethanol and 2,2,2-trifluoroethanol) solvents reveals a broad electronic absorption band centered at 540 nm that is assigned to an isomer of chlorobenzene with both charge-separated and triplet-spin carbene character. This spectroscopic feature is weaker, or absent, when experiments are conducted in cyclohexane. The intermediate isomer of chlorobenzene has a solvent-dependent lifetime of 30-110 ps, determined by reaction with the solvent or quenching to a lower-lying singlet state. Evidence is presented for dissociation to ortho-benzyne, but the intermediate could also be a precursor to phenyl cation formation.

9.
J Phys Chem A ; 126(9): 1571-1577, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35196856

RESUMEN

Understanding the optical properties of micrometer-scale light-absorbing aerosol particles is of paramount importance in addressing key challenges in atmospheric and physical chemistry. For example, the absorption of solar radiation by atmospheric aerosols represents one of the largest uncertainties in climate models. Moreover, reaction acceleration within the unique environments of aerosol droplets cannot be replicated in bulk solutions. The causes of these reaction rate enhancements remain controversial, but ultrasensitive spectroscopic measurements of evolving aerosol optical properties should provide new insights. We demonstrate a new approach using cavity ring-down spectroscopy that allows the first direct spectroscopic quantification of the continuously evolving absorption and scattering cross sections for single, levitated, micrometer-scale particles as their size and chromophore concentration change. For two-component droplets composed of nigrosin and 1,2,6-hexanetriol, the unprecedented sensitivity of our measurements reveals the evolving real and imaginary components of the refractive index caused by changes in concentration as 1,2,6-hexanetriol slowly evaporates.

10.
J Am Chem Soc ; 143(41): 17191-17199, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34614354

RESUMEN

Radical-induced 1,2-metalate rearrangements of boronate complexes are an emerging and promising class of reactions that allow multiple new bonds to be formed in a single, tunable reaction step. These reactions involve the addition of an alkyl radical, typically generated from an alkyl iodide under photochemical activation, to a boronate complex to produce an α-boryl radical intermediate. From this α-boryl radical, there are two plausible reaction pathways that can trigger the product forming 1,2-metalate rearrangement: iodine atom transfer (IAT) or single electron transfer (SET). Previous steady-state techniques have struggled to differentiate these pathways. Here we apply state-of-the-art time-resolved infrared absorption spectroscopy to resolve all the steps in the reaction cycle by mapping production and consumption of the reactive intermediates over picosecond to millisecond time scales. We apply this technique to a recently reported reaction involving the addition of an electron-deficient alkyl radical to the strained σ-bond of a bicyclo[1.1.0]butyl boronate complex to form a cyclobutyl boronic ester. We show that the previously proposed SET mechanism does not adequately account for the observed spectral and kinetic data. Instead, we demonstrate that IAT is the preferred pathway for this reaction and is likely to be operative for other reactions of this type.

11.
J Am Chem Soc ; 143(9): 3613-3627, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33629835

RESUMEN

The photochemical dynamics of three classes of organic photoredox catalysts employed in organocatalyzed atom-transfer radical polymerization (O-ATRP) are studied using time-resolved optical transient absorption and fluorescence spectroscopy. The nine catalysts selected for study are examples of N-aryl and core-substituted dihydrophenazine, phenoxazine and phenothiazine compounds with varying propensities for control of polymerization outcomes. Excited singlet-state lifetimes extracted from the spectroscopic measurements are reported in N,N-dimethylformamide (DMF), dichloromethane (DCM), and toluene. Ultrafast (<200 fs to 3 ps) electronic relaxation of the photocatalysts after photoexcitation at near-UV wavelengths (318-390 nm) populates the first singlet excited state (S1). The S1-state lifetimes range from 130 ps to 40 ns with a considerable dependence on the photocatalyst structure and the solvent. The competition between ground electronic state recovery and intersystem crossing controls triplet state populations and is a minor pathway in the dihydrophenazine derivatives but is of greater importance for phenoxazine and phenothiazine catalysts. A comparison of our results with previously reported O-ATRP performances of the various photoredox catalysts shows that high triplet-state quantum yields are not a prerequisite for controlling polymer dispersity. For example, the photocatalyst 5,10-bis(4-cyanophenyl)-5,10-dihydrophenazine, shown previously to exert good polymerization control, possesses the shortest S1-state lifetime (135 ps in DMF and 180 ps in N,N-dimethylacetamide) among the nine examples reported here and a negligible triplet-state quantum yield. The results call for a re-evaluation of the excited-state properties of most significance in governing the photocatalytic behavior of organic photoredox catalysts in O-ATRP reactions.

12.
Phys Chem Chem Phys ; 23(34): 18378-18392, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34612379

RESUMEN

The polymerization of photoexcited N-ethylcarbazole (N-EC) in the presence of an electron acceptor begins with an electron transfer (ET) step to generate a radical cation of N-EC (N-EC˙+). Here, the production of N-EC˙+ is studied on picosecond to nanosecond timescales after N-EC photoexcitation at a wavelength λex = 345 nm using transient electronic and vibrational absorption spectroscopy. The kinetics and mechanisms of ET to diphenyliodonium hexafluorophosphate (Ph2I+PF6-) or para-alkylated variants are examined in dichloromethane (DCM) and acetonitrile (ACN) solutions. The generation of N-EC˙+ is well described by a diffusional kinetic model based on Smoluchowski theory: with Ph2I+PF6-, the derived bimolecular rate coefficient for ET is kET = (1.8 ± 0.5) × 1010 M-1 s-1 in DCM, which is consistent with diffusion-limited kinetics. This ET occurs from the first excited singlet (S1) state of N-EC, in competition with intersystem crossing to populate the triplet (T1) state, from which ET may also arise. A faster component of the ET reaction suggests pre-formation of a ground-state complex between N-EC and the electron acceptor. In ACN, the contribution from pre-reaction complexes is smaller, and the derived ET rate coefficient is kET = (1.0 ± 0.3) × 1010 M-1 s-1. Corresponding measurements for solutions of photoexcited 9-phenylcarbazole (9-PC) and Ph2I+PF6- give kET = (5 ± 1) × 109 M-1 s-1 in DCM. Structural modifications of the electron acceptor to increase its steric bulk reduce the magnitude of kET: methyl and t-butyl additions to the para positions of the phenyl rings (para Me2Ph2I+PF6- and t-butyl-Ph2I+PF6-) respectively give kET = (1.2 ± 0.3) × 1010 M-1 s-1 and kET = (5.4 ± 1.5) × 109 M-1 s-1 for reaction with photoexcited N-EC in DCM. These reductions in kET are attributed to slower rates of diffusion or to steric constraints in the ET reaction.

13.
J Phys Chem A ; 125(2): 636-645, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33416312

RESUMEN

The excited-state dynamics of photoexcited diethylamino hydroxybenzoyl hexyl benzoate (DHHB), a UVA absorber widely used in sunscreen formulations, are studied with transient electronic and vibrational absorption spectroscopy methods in four different solvents. In the polar solvents methanol, dimethyl sulfoxide (DMSO), and acetonitrile, strong stimulated emission (SE) is observed at early time delays after photoexcitation at a near-UV wavelength of λex = 360 nm, and decays with time constants of 420 fs in methanol and 770 fs in DMSO. The majority (∼95%) of photoexcited DHHB returns to the ground state with time constants of 15 ps in methanol and 25 ps in DMSO. In the nonpolar solvent cyclohexane, ∼ 98% of DHHB photoexcited at λex = 345 nm relaxes to the ground state with a ∼ 10 ps time constant, and the SE is weak. DHHB preferentially adopts an enol form in its ground S0 state, but excited state absorption (ESA) bands seen in TEAS are assigned to both the S1-keto and S1-enol forms, indicating a role for ultrafast intramolecular excited state hydrogen transfer (ESHT). This ESHT is inhibited by polar solvents. The two S1 tautomers decay with similar time scales to the observed recovery of ground state population. For molecules that avoid ESHT, torsion around a central C-C bond minimizes the S1-enol energy, quenches the SE, and is proposed to lead to a conical intersection with the S0 state that mediates the ground state recovery. A competing trans-enol isomeric photoproduct is observed as a minor competitor to parent recovery in polar solvents. Evidence is presented for triplet (T1) enol production in polar solvents, and for T1 quenching by octocrylene, a common UVB absorber sunscreen additive. The T1 keto form is observed in cyclohexane solution.

14.
J Phys Chem A ; 125(1): 394-405, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33355458

RESUMEN

Optical trapping is a well-established technique to manipulate and levitate micro- and nanoscale particles and droplets. However, optical traps for single aerosol studies are most often limited to trapping spherical nonabsorbing droplets, and a universal optical trap for the stable confinement of particles regardless of their absorption strength and morphology is not established. Instead, new opportunities arise from levitating droplets using electrodynamic traps. Here, using a combined electrodynamic linear quadrupole trap and a cavity ring-down spectrometer, we demonstrate that it is possible to trap single droplets and simultaneously measure their extinction cross sections and elastic scattering phase functions over extended periods of time. To test the novel setup, we evaluated the evaporation of 1,2,6-hexanetriol under low-humidity conditions, and the evolution of aqueous (NH4)2SO4 and NaCl droplets experiencing changing environmental conditions. Our studies extended beyond spherical droplets and we measured particle extinction cross sections after the efflorescence (crystallization) of the inorganic salt particles. Comparison of measured cross sections for crystallized particles with light scattering model predictions (using Mie theory or the T-matrix/extended boundary-condition method (EBCM) implementations for random orientation, with either the spheroid or superellipsoid parameterizations) enables information on particle shape to be inferred. Specifically, we find that cross sections for dry (NH4)2SO4 particles are accounted for by Mie theory and, thus, particle shape is represented well by a sphere. Conversely, the cross sections for dry NaCl particles are only reconciled with light scattering models pertaining to nonspherical shapes. These results will have implications for accurate remote sensing retrievals of dry salt optical properties and for parameterizations implemented in radiative forcing calculations with changing humidity. Moreover, our new platform for precise and accurate measurement of optical properties of micron-scale and sub-micron particles has potential applications in a range of areas of atmospheric science, such as precise light scattering measurements for ice crystals and mineral dust. It represents a promising step toward accurate characterizations of optical properties for nonspherical and light-absorbing aerosols.

15.
J Am Chem Soc ; 142(17): 7836-7844, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32267699

RESUMEN

The photoexcitation of α-diazocarbonyl compounds produces ketenes by both concerted and stepwise Wolff rearrangements. The stepwise mechanism proceeds through singlet carbene intermediates which can also participate in bimolecular reactions such as ylide formation with nucleophiles. Here, ultrafast transient infrared absorption spectroscopy is used to show competitive production of singlet carbene and ketene intermediates from the photoexcitation of ethyl diazoacetoacetate. We provide direct spectroscopic evidence for ylide formation by singlet α-carbonyl carbene capture in aprotic nucleophilic solvents (with ylide bands at 1625 cm-1 in acetonitrile and 1586 and 1635 cm-1 in tetrahydrofuran) and report an enol-mediated pathway for singlet α-carbonyl carbene reaction with alcohols (ethanol or tert-butanol) identified by an absorption band at 1694 cm-1; however, we find no evidence for a previously proposed ylide pathway. The α-carbonyl carbene is monitored by using a band with solvent-dependent wavenumber in the range 1627-1645 cm-1. A computed two-dimensional cut of the potential energy surface for the reaction of the singlet α-carbonyl carbene with methanol shows that the enol forms without a barrier and that this reaction is promoted by an intermolecular hydrogen bond from methanol to the carbonyl oxygen atom. The corresponding ylide structure lies higher in energy, with a barrierless downhill path to isomerization to the enol.

16.
J Am Chem Soc ; 141(38): 15222-15229, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31478656

RESUMEN

A long-standing ambition of photochemists is to excite species selectively in a complex liquid solution and in turn instigate a controlled chemical reaction. Benzophenone (Bzp) has been studied over six decades as a model system for understanding the photophysics and photochemistry of organic chromophores. Herein, we exploit the red-edge excitation effect to demonstrate that by subensemble selective excitation of Bzp molecules, either coordinated or noncoordinated to phenol through hydrogen bonding in a dichloromethane solution, the rate of an H atom abstraction reaction can be accelerated by a factor of ∼40. To this end, we have employed femtosecond time-resolved electronic and vibrational absorption spectroscopy in conjunction with DFT/TD-DFT calculations. The outcomes have implications for deductions drawn from single-excitation-wavelength studies of the photochemistry of similar molecular systems and especially of charge-transfer chromophores.

17.
Phys Chem Chem Phys ; 21(26): 14042-14052, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-30652179

RESUMEN

Ammonia and amines are emitted into the troposphere by various natural and anthropogenic sources, where they have a significant role in aerosol formation. Here, we explore the significance of their removal by reaction with Criegee intermediates, which are produced in the troposphere by ozonolysis of alkenes. Rate coefficients for the reactions of two representative Criegee intermediates, formaldehyde oxide (CH2OO) and acetone oxide ((CH3)2COO) with NH3 and CH3NH2 were measured using cavity ring-down spectroscopy. Temperature-dependent rate coefficients, k(CH2OO + NH3) = (3.1 ± 0.5) × 10-20T2 exp(1011 ± 48/T) cm3 s-1 and k(CH2OO + CH3NH2) = (5 ± 2) × 10-19T2 exp(1384 ± 96/T) cm3 s-1 were obtained in the 240 to 320 K range. Both the reactions of CH2OO were found to be independent of pressure in the 10 to 100 Torr (N2) range, and average rate coefficients k(CH2OO + NH3) = (8.4 ± 1.2) × 10-14 cm3 s-1 and k(CH2OO + CH3NH2) = (5.6 ± 0.4) × 10-12 cm3 s-1 were deduced at 293 K. An upper limit of ≤2.7 × 10-15 cm3 s-1 was estimated for the rate coefficient of the (CH3)2COO + NH3 reaction. Complementary measurements were performed with mass spectrometry using synchrotron radiation photoionization giving k(CH2OO + CH3NH2) = (4.3 ± 0.5) × 10-12 cm3 s-1 at 298 K and 4 Torr (He). Photoionization mass spectra indicated production of NH2CH2OOH and CH3N(H)CH2OOH functionalized organic hydroperoxide adducts from CH2OO + NH3 and CH2OO + CH3NH2 reactions, respectively. Ab initio calculations performed at the CCSD(T)(F12*)/cc-pVQZ-F12//CCSD(T)(F12*)/cc-pVDZ-F12 level of theory predicted pre-reactive complex formation, consistent with previous studies. Master equation simulations of the experimental data using the ab initio computed structures identified submerged barrier heights of -2.1 ± 0.1 kJ mol-1 and -22.4 ± 0.2 kJ mol-1 for the CH2OO + NH3 and CH2OO + CH3NH2 reactions, respectively. The reactions of NH3 and CH3NH2 with CH2OO are not expected to compete with its removal by reaction with (H2O)2 in the troposphere. Similarly, losses of NH3 and CH3NH2 by reaction with Criegee intermediates will be insignificant compared with reactions with OH radicals.

19.
J Phys Chem A ; 123(13): 2679-2686, 2019 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-30865455

RESUMEN

Quasi-classical trajectory simulations examine the reaction of Cl with propene across a range of collision energies, from 7 to 28 kJ mol-1. The majority (70% at 7 kJ mol-1, 86% at 14 kJ mol-1, and 93% at 28 kJ mol-1) of reactive trajectories produce HCl by direct abstraction of a hydrogen atom from the methyl group of propene, but the remainder involve a variety of delayed mechanisms. Among these longer-lived trajectories, transient formation of an energized 1-chloropropyl radical intermediate is predominant, with only a minor contribution from the 2-chloropropyl radical and roaming pathways. The branching ratios between these intermediate states are largely invariant to collision energy, although the overall proportion of indirect trajectories increases at lower collision energies. The greater role for longer-lived trajectories is reflected in the computed product scattering angle distributions, which become more isotropic at lower energies. However, the distributions of population over vibrational and rotational states of the product HCl do not change with collision energy because they are controlled by the dynamics late along the reaction path.

20.
J Phys Chem A ; 123(36): 7758-7767, 2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31442046

RESUMEN

Using a combination of velocity-map imaging and resonance-enhanced multiphoton ionization detection with crossed molecular beam scattering, the dynamics of rotational energy transfer have been examined for NO in collisions with CH4 at a mean collision energy of 700 cm-1. The images of NO scattered into individual rotational (jNO') and spin-orbit (Ω) levels typically exhibit a single broad maximum that gradually shifts from the forward to the backward scattering direction with increasing rotational excitation (i.e., larger ΔjNO). The rotational rainbow angles calculated with a two-dimensional hard ellipse model show reasonable agreement with the observed angles corresponding to the maxima in the differential cross sections extracted from the images for higher ΔjNO transitions, but there are clear discrepancies for lower ΔjNO (in particular, final rotational levels with jNO' = 7.5 and 8.5). The sharply forward scattered angular distributions for these lower ΔjNO transitions better agree with the predictions of an L-type rainbow model. The more highly rotationally excited NO appears to coincide with low rotational excitation of the co-product CH4, indicating a degree of rotational product-pair anticorrelation in this bimolecular scattering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA