Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446312

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Histopathologically, AD presents two pathognomonic hallmarks: (1) neurofibrillary tangles, characterized by intracellular deposits of hyperphosphorylated tau protein, and (2) extracellular amyloid deposits (amyloid plaques) in the brain vasculature (cerebral amyloid angiopathy; CAA). It has been proposed that vascular amyloid deposits could trigger neurovascular unit (NVU) dysfunction in AD. The NVU is composed primarily of astrocytic feet, endothelial cells, pericytes, and basement membrane. Although physical exercise is hypothesized to have beneficial effects against AD, it is unknown whether its positive effects extend to ameliorating CAA and improving the physiology of the NVU. We used the triple transgenic animal model for AD (3xTg-AD) at 13 months old and analyzed through behavioral and histological assays, the effect of voluntary physical exercise on cognitive functions, amyloid angiopathy, and the NVU. Our results show that 3xTg-AD mice develop vascular amyloid deposits which correlate with cognitive deficits and NVU alteration. Interestingly, the physical exercise regimen decreases amyloid angiopathy and correlates with an improvement in cognitive function as well as in the underlying integrity of the NVU components. Physical exercise could represent a key therapeutic approach in cerebral amyloid angiopathy and NVU stability in AD patients.


Asunto(s)
Enfermedad de Alzheimer , Angiopatía Amiloide Cerebral , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Placa Amiloide/metabolismo , Células Endoteliales/metabolismo , Ratones Transgénicos , Angiopatía Amiloide Cerebral/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/metabolismo
2.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35163349

RESUMEN

Immunostaining has emerged as one of the most common and valuable techniques that allow the localization of proteins at a quantitative level within cells and tissues using antibodies coupled to enzymes, fluorochromes, or colloidal nanogold particles. The application of fluorochromes during immunolabeling is referred to as immunofluorescence, a method coupled to widefield or confocal microscopy and extensively applied in basic research and clinical diagnosis. Notwithstanding, there are still disadvantages associated with the application of this technique due to technical challenges in the process, such as sample fixation, permeabilization, antibody incubation times, and fluid exchange, etc. These disadvantages call for continuous updates and improvements to the protocols extensively described in the literature. This review contributes to protocol optimization, outlining 10 current methods for improving sample processing in different stages of immunofluorescence, including a section with further recommendations. Additionally, we have extended our own antibody signal enhancer method, which was reported to significantly increase antibody signals and is useful for cervical cancer detection, to improve the signals of fluorochrome-conjugated staining reagents in fibrous tissues. In summary, this review is a valuable tool for experienced researchers and beginners when planning or troubleshooting the immunofluorescence assay.


Asunto(s)
Anticuerpos , Colorantes Fluorescentes , Técnica del Anticuerpo Fluorescente , Microscopía Confocal , Coloración y Etiquetado
3.
BMC Neurosci ; 22(1): 14, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653273

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is characterized by cognitive impairment that eventually develops into dementia. Amyloid-beta (Aß) accumulation is a widely described hallmark in AD, and has been reported to cause olfactory dysfunction, a condition considered an early marker of the disease associated with injuries in the olfactory bulb (OB), the hippocampus (HIPP) and other odor-related cortexes. Adiponectin (APN) is an adipokine with neuroprotective effects. Studies have demonstrated that APN administration decreases Aß neurotoxicity and Tau hyperphosphorylation in the HIPP, reducing cognitive impairment. However, there are no studies regarding the neuroprotective effects of APN in the olfactory dysfunction observed in the Aß rat model. The aim of the present study is to determine whether the intracerebroventricular (i.c.v) administration of APN prevents the early olfactory dysfunction in an i.c.v Amyloid-beta1-42 (Aß1-42) rat model. Hence, we evaluated olfactory function by using a battery of olfactory tests aimed to assess olfactory memory, discrimination and detection in the Aß rat model treated with APN. In addition, we determined the number of cells expressing the neuronal nuclei (NeuN), as well as the number of microglial cells by using the ionized calcium-binding adapter molecule 1 (Iba-1) marker in the OB and, CA1, CA3, hilus and dentate gyrus (DG) in the HIPP. Finally, we determined Arginase-1 expression in both nuclei through Western blot. RESULTS: We observed that the i.c.v injection of Aß decreased olfactory function, which was prevented by the i.c.v administration of APN. In accordance with the olfactory impairment observed in i.c.v Aß-treated rats, we observed a decrease in NeuN expressing cells in the glomerular layer of the OB, which was also prevented with the i.c.v APN. Furthermore, we observed an increase of Iba-1 cells in CA1, and DG in the HIPP of the Aß rats, which was prevented by the APN treatment. CONCLUSION: The present study describes the olfactory impairment of Aß treated rats and evidences the protective role that APN plays in the brain, by preventing the olfactory impairment induced by Aß1-42. These results may lead to APN-based pharmacological therapies aimed to ameliorate AD neurotoxic effects.


Asunto(s)
Adiponectina/farmacología , Enfermedad de Alzheimer , Encéfalo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Trastornos del Olfato , Péptidos beta-Amiloides/toxicidad , Animales , Modelos Animales de Enfermedad , Inyecciones Intraventriculares , Masculino , Trastornos del Olfato/etiología , Ratas , Ratas Wistar
4.
Bioorg Med Chem ; 28(20): 115700, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33069076

RESUMEN

The aggregation of ß-amyloid peptides is associated to neurodegeneration in Alzheimer's disease (AD) patients. Consequently, the inhibition of both oligomerization and fibrillation of ß-amyloid peptides is considered a plausible therapeutic approach for AD. Herein, the synthesis of new naphthalene derivatives and their evaluation as anti-ß-amyloidogenic agents are presented. Molecular dynamic simulations predicted the formation of thermodynamically stable complexes between the compounds, the Aß1-42 peptide and fibrils. In human microglia cells, these compounds inhibited the aggregation of Aß1-42 peptide. The lead compound 8 showed a high affinity to amyloid plaques in mice brain ex vivo assays and an adequate log Poct/PBS value. Compound 8 also improved the cognitive function and decreased hippocampal ß-amyloid burden in the brain of 3xTg-AD female mice. Altogether, our results suggest that 8 could be a novel therapeutic agent for AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/antagonistas & inhibidores , Naftalenos/farmacología , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/antagonistas & inhibidores , Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Relación Dosis-Respuesta a Droga , Ratones , Ratones Endogámicos C57BL , Simulación de Dinámica Molecular , Estructura Molecular , Naftalenos/síntesis química , Naftalenos/química , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Fragmentos de Péptidos/metabolismo , Agregación Patológica de Proteínas/metabolismo , Relación Estructura-Actividad , Termodinámica
5.
J Biol Chem ; 293(22): 8462-8472, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29632073

RESUMEN

Tau hyperphosphorylation at several sites, including those close to the microtubule domain region (MDr), is considered a key pathological event in the development of Alzheimer's disease (AD). Recent studies indicate that at the very early stage of this disease, increased phosphorylation in Tau's MDr domain correlates with reduced levels of neuronal excitability. Mechanistically, we show that pyramidal neurons and some parvalbumin-positive interneurons in 1-month-old triple-transgenic AD mice accumulate hyperphosphorylated Tau protein and that this accumulation correlates with changes in theta oscillations in hippocampal neurons. Pyramidal neurons from young triple-transgenic AD mice exhibited less spike accommodation and power increase in subthreshold membrane oscillations. Furthermore, triple-transgenic AD mice challenged with the potassium channel blocker 4-aminopyridine had reduced theta amplitude compared with 4-aminopyridine-treated control mice and, unlike these controls, displayed no seizure-like activity after this challenge. Collectively, our results provide new insights into AD pathogenesis and suggest that increases in Tau phosphorylation at the initial stages of the disease represent neuronal responses that compensate for brain circuit overexcitation.


Asunto(s)
Potenciales de Acción , Enfermedad de Alzheimer/patología , Modelos Animales de Enfermedad , Hipocampo/patología , Células Piramidales/patología , Ritmo Teta/fisiología , Proteínas tau/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Células Cultivadas , Hipocampo/metabolismo , Masculino , Ratones , Ratones Transgénicos , Fosforilación , Células Piramidales/metabolismo
8.
Cells ; 12(21)2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37947609

RESUMEN

Alzheimer's disease (AD) is the main neurodegenerative disorder characterized by several pathophysiological features, including the misfolding of the tau protein and the amyloid beta (Aß) peptide, neuroinflammation, oxidative stress, synaptic dysfunction, metabolic alterations, and cognitive impairment. These mechanisms collectively contribute to neurodegeneration, necessitating the exploration of therapeutic approaches with multiple targets. Physical exercise has emerged as a promising non-pharmacological intervention for AD, with demonstrated effects on promoting neurogenesis, activating neurotrophic factors, reducing Aß aggregates, minimizing the formation of neurofibrillary tangles (NFTs), dampening inflammatory processes, mitigating oxidative stress, and improving the functionality of the neurovascular unit (NVU). Overall, the neuroprotective effects of exercise are not singular, but are multi-targets. Numerous studies have investigated physical exercise's potential in both AD patients and animal models, employing various exercise protocols to elucidate the underlying neurobiological mechanisms and effects. The objective of this review is to analyze the neurological therapeutic effects of these exercise protocols in animal models and compare them with studies conducted in AD patients. By translating findings from different approaches, this review aims to identify opportune, specific, and personalized therapeutic windows, thus advancing research on the use of physical exercise with AD patients.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Ovillos Neurofibrilares/metabolismo , Modelos Animales de Enfermedad , Estrés Oxidativo
9.
J Alzheimers Dis ; 87(2): 529-543, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35342085

RESUMEN

BACKGROUND: Tau hyperphosphorylation at several sites, including those close to its microtubule domain (MD), is considered a key pathogenic event in the development of tauopathies. Nevertheless, we recently demonstrated that at the very early disease stage, tau phosphorylation (pTau) at MD sites promotes neuroprotection by preventing seizure-like activity. OBJECTIVE: To further support the notion that very early pTau is not detrimental, the present work evaluated the young rTg4510 mouse model of tauopathy as a case study. Thus, in mice at one month of age (PN30-35), we studied the increase of pTau within the hippocampal area as well as hippocampal and locomotor function. METHODS: We used immunohistochemistry, T-maze, nesting test, novel object recognition test, open field arena, and electrophysiology. RESULTS: Our results showed that the very young rTg4510 mouse model has no detectable changes in hippocampal dependent tasks, such as spontaneous alternation and nesting, or in locomotor activity. However, at this very early stage the hippocampal neurons from PN30-35 rTg4510 mice accumulate pTau protein and exhibit changes in hippocampal oscillatory activity. Moreover, we found a significant reduction in the somatic area of pTau positive pyramidal and granule neurons in the young rTg4510 mice. Despite this, improved memory and increased number of dendrites per cell in granule neurons was found. CONCLUSION: Altogether, this study provides new insights into the early pathogenesis of tauopathies and provides further evidence that pTau remodels hippocampal function and morphology.


Asunto(s)
Tauopatías , Proteínas tau , Animales , Cognición , Modelos Animales de Enfermedad , Hipocampo/patología , Humanos , Ratones , Ratones Transgénicos , Tauopatías/patología , Proteínas tau/genética , Proteínas tau/metabolismo
10.
Bio Protoc ; 10(4): e3529, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33654753

RESUMEN

Transgenic mice have been used to make valuable contributions to the field of neuroscience and model neurological diseases. The simultaneous functional analysis of hippocampal cell activity combined with hippocampal dependent innate task evaluations provides a reliable experimental approach to detect fine changes during early phases of neurodegeneration. To this aim, we used a merge of patch-clamp with two hippocampal innate behavior tasks. With this experimental approach, whole-cell recordings of CA1 pyramidal cells, combined with hippocampal-dependent innate behaviors, have been crucial for evaluating the early mechanism of neurodegeneration and its consequences. Here, we present our protocol for ex vivo whole-cell recordings of CA1 pyramidal cells and hippocampal dependent innate behaviors in an adolescent (p30) mice.

11.
Behav Brain Res ; 379: 112373, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31759047

RESUMEN

The hippocampus plays a fundamental role in spatial learning and memory. Dentate gyrus (DG) granular neurons project mainly to proximal apical dendrites of neurons in the CA3 stratum lucidum and also, to some extent, to the basal dendrites of CA3 pyramidal cells in the stratum oriens. The terminal specializations of DG neurons are the mossy fibers (MF), and these huge axon terminals show expansion in the CA3 stratum oriens after the animals undergo overtraining in the Morris Water Maze task (MWM). However, to our knowledge there are no reports regarding the possible changes in density of post-synaptic targets of these terminals in the basal dendrites of CA3 neurons after overtraining in the MWM. The purpose of this work was to study the density of thorny excrescences (TE) and other dendritic spine types (stubby, thin, and mushroom) in the CA3 stratum oriens in animals overtrained in the MWM for three consecutive days and in animals trained for only one day. Seven days after MWM training, the animals were sacrificed, and their brains removed and processed for rapid Golgi staining to visualize the different types of dendritic protrusions. Our results revealed that the relative quantity of stubby, thin, and mushroom dendritic spines did not change, regardless of amount of training. However, a significant increase in the density of TE was detected in the overtrained animals. These results strongly suggest that spatial water maze overtraining induces an increased density of MF-TE connections, which might be functionally relevant for long-term spatial memory formation.


Asunto(s)
Región CA3 Hipocampal/citología , Espinas Dendríticas , Prueba del Laberinto Acuático de Morris/fisiología , Práctica Psicológica , Células Piramidales , Animales , Región CA3 Hipocampal/fisiología , Espinas Dendríticas/fisiología , Masculino , Memoria a Largo Plazo/fisiología , Células Piramidales/fisiología , Ratas , Ratas Sprague-Dawley , Memoria Espacial/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA