Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 15(12): 8311-5, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26587897

RESUMEN

Active biocompatible systems are of great current interest for their possible applications in drug or antidote delivery at specific locations. Herein, we report the synthesis and study of self-propelled microparticles powered by enzymatic reactions and their directed movement in substrate concentration gradient. Polystyrene microparticles were functionalized with the enzymes urease and catalase using a biotin-streptavidin linkage procedure. The motion of the enzyme-coated particles was studied in the presence of the respective substrates, using optical microscopy and dynamic light scattering analysis. The diffusion of the particles was found to increase in a substrate concentration dependent manner. The directed chemotactic movement of these enzyme-powered motors up the substrate gradient was studied using three-inlet microfluidic channel architecture.


Asunto(s)
Enzimas/química , Materiales Biocompatibles , Catálisis , Microfluídica
2.
ACS Nano ; 16(12): 21087-21097, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36449948

RESUMEN

Complexation between oppositely charged nanoparticles (NPs) and polyelectrolytes (PEs) is a scalable approach to assemble functional, stimuli-responsive membranes. Complexation at interfaces of aqueous two-phase systems (ATPSs) has emerged as a powerful method to assemble these functional structures. Membranes formed at these interfaces can grow continuously to thicknesses approaching several millimeters and display a high degree of tunability via modification of solution properties such as ionic strength. To identify the membrane assembly mechanism, we study interfacial assembly in a prototypical dextran/PEG ATPS, in which silica (SiO2) NPs suspended in the PEG phase undergo interfacial complexation with poly(diallyldimethylammonium chloride) (PDADMAC) supplied in the dextran phase. Using a microfluidic device that facilitates sequential insertion of fluorescent and nonfluorescent PDADMAC, we observe a transition in the membrane growth mechanism with ionic strength. In the absence of added salt ([NaCl] = 0 mM) PDADMAC chains permeate through the existing membrane to complex with NPs on the PEG side of the membrane, leading to the formation of well-stratified structures. At elevated ionic strength ([NaCl] = 500 mM), this permeation mechanism is lost. Rather, the complexing species incorporate uniformly across the membrane. We attribute this transition to a rapid exchange of PE-counterion, NP-counterion, and PE/NP binding sites facilitated by an increase in extrinsically compensated charged groups on the NPs and PEs at high salinity. These PDADMAC/SiO2 NP membranes have tremendous potential for the formation of functional membranes, offering control over the internal structure and serving as an ideal system for the generation of targeted release systems.

3.
J Phys Chem A ; 113(16): 4639-46, 2009 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-19265388

RESUMEN

FRET experiments enable studies of the chemical and physical properties of individual molecules, which has long been a dream of chemists. However, these modern experimental techniques are still limited by the lack of information about the dynamic behavior of the fluorescent labels as well as by the use of dipole-dipole approximation even at short donor-to-acceptor distances. Our results help to suggest that these assumptions need to be carefully considered when designing experiments. We show that at short donor-acceptor separation, dipole-dipole approximation breaks down and Forster theory fails and cannot be used to obtain correct distances. We also explicitly demonstrate that dyes' linkers allow for a lot of flexibility in the fluorescent label orientation and position resulting in distances much shorter than assumed earlier.


Asunto(s)
Modelos Moleculares , Péptidos/química , Calibración , Colorantes/química , Transferencia Resonante de Energía de Fluorescencia , Conformación Molecular , Sensibilidad y Especificidad
4.
J Phys Chem B ; 109(23): 11512-9, 2005 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-16852410

RESUMEN

We present a theoretical investigation of energy transfer in the phenylene ethynelene dendrimer known as the nanostar. Data from extensive molecular dynamics simulations are used to model the dynamical effects caused by torsional motion of the phenyl groups. We compare rate constants for energy transfer between the two-ring chromophore and the three-ring chromophore obtained via the Förster model, the ideal dipole approximation (IDA), and the transition density cube (TDC) method, which has as its limit an exact representation of the Coulombic coupling. We find that the rate constants obtained with the TDC are extremely sensitive to the phenyl group rotation, whereas the constants computed with the Förster model and the IDA are not. The implications of these results for the interpretation of recent pump-probe experiments on the nanostar are discussed in detail. Finally, we predict the temperature dependence of the rate constant for energy transfer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA