Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Alzheimers Dis ; 77(2): 675-688, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32741831

RESUMEN

BACKGROUND: Early-onset familial Alzheimer disease (EOFAD) is caused by heterozygous variants in the presenilin 1 (PSEN1), presenilin 2 (PSEN2), and APP genes. Decades after their discovery, the mechanisms by which these genes cause Alzheimer's disease (AD) or promote AD progression are not fully understood. While it is established that presenilin (PS) enzymatic activity produces amyloid-ß (Aß), PSs also regulate numerous other cellular functions, some of which intersect with known pathogenic drivers of neurodegeneration. Accumulating evidence suggests that microglia, resident innate immune cells in the central nervous system, play a key role in AD neurodegeneration. OBJECTIVE: Previous work has identified a regulatory role for PS2 in microglia. We hypothesized that PSEN2 variants lead to dysregulated microglia, which could further contribute to disease acceleration. To mimic the genotype of EOFAD patients, we created a transgenic mouse expressing PSEN2 N141I on a mouse background expressing one wildtype PS2 and two PS1 alleles. RESULTS: Microglial expression of PSEN2 N141I resulted in impaired γ-secretase activity as well as exaggerated inflammatory cytokine release, NFκB activity, and Aß internalization. In vivo, PS2 N141I mice showed enhanced IL-6 and TREM2 expression in brain as well as reduced branch number and length, an indication of "activated" morphology, in the absence of inflammatory stimuli. LPS intraperitoneal injection resulted in higher inflammatory gene expression in PS2 N141I mouse brain relative to controls. CONCLUSION: Our findings demonstrate that PSEN2 N141I heterozygosity is associated with disrupted innate immune homeostasis, suggesting EOFAD variants may promote disease progression through non-neuronal cells beyond canonical dysregulated Aß production.


Asunto(s)
Enfermedad de Alzheimer/genética , Variación Genética/genética , Heterocigoto , Microglía/fisiología , Fenotipo , Presenilina-2/genética , Enfermedad de Alzheimer/patología , Animales , Línea Celular Tumoral , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/patología
2.
Ann Clin Transl Neurol ; 6(4): 762-777, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31020001

RESUMEN

OBJECTIVE: Autosomal-dominant familial Alzheimer disease (AD) is caused by by variants in presenilin 1 (PSEN1), presenilin 2 (PSEN2), and amyloid precursor protein (APP). Previously, we reported a rare PSEN2 frameshift variant in an early-onset AD case (PSEN2 p.K115Efs*11). In this study, we characterize a second family with the same variant and analyze cellular transcripts from both patient fibroblasts and brain lysates. METHODS: We combined genomic, neuropathological, clinical, and molecular techniques to characterize the PSEN2 K115Efs*11 variant in two families. RESULTS: Neuropathological and clinical evaluation confirmed the AD diagnosis in two individuals carrying the PSEN2 K115Efs*11 variant. A truncated transcript from the variant allele is detectable in patient fibroblasts while levels of wild-type PSEN2 transcript and protein are reduced compared to controls. Functional studies to assess biological consequences of the variant demonstrated that PSEN2 K115Efs*11 fibroblasts secrete less Aß 1-40 compared to controls, indicating abnormal γ-secretase activity. Analysis of PSEN2 transcript levels in brain tissue revealed alternatively spliced PSEN2 products in patient brain as well as in sporadic AD and age-matched control brain. INTERPRETATION: These data suggest that PSEN2 K115Efs*11 is a likely pathogenic variant associated with AD. We uncovered novel PSEN2 alternative transcripts in addition to previously reported PSEN2 splice isoforms associated with sporadic AD. In the context of a frameshift, these alternative transcripts return to the canonical reading frame with potential to generate deleterious protein products. Our findings suggest novel potential mechanisms by which PSEN variants may influence AD pathogenesis, highlighting the complexity underlying genetic contribution to disease risk.


Asunto(s)
Empalme Alternativo/genética , Enfermedad de Alzheimer/genética , Mutación/genética , Presenilina-2/genética , Adulto , Enfermedad de Alzheimer/diagnóstico , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Humanos , Masculino , Persona de Mediana Edad , Fragmentos de Péptidos/genética , Presenilina-1/genética
3.
ASN Neuro ; 9(4): 1759091417716610, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28683563

RESUMEN

Microglia are the primary innate immune cell type in the brain, and their dysfunction has been linked to a variety of central nervous system disorders. Human microglia are extraordinarily difficult to obtain for experimental investigation, limiting our ability to study the impact of human genetic variants on microglia functions. Previous studies have reported that microglia-like cells can be derived from human monocytes or pluripotent stem cells. Here, we describe a reproducible relatively simple method for generating microglia-like cells by first deriving embryoid body mesoderm followed by exposure to microglia relevant cytokines. Our approach is based on recent studies demonstrating that microglia originate from primitive yolk sac mesoderm distinct from peripheral macrophages that arise during definitive hematopoiesis. We hypothesized that functional microglia could be derived from human stem cells by employing BMP-4 mesodermal specification followed by exposure to microglia-relevant cytokines, M-CSF, GM-CSF, IL-34, and TGF-ß. Using immunofluorescence microscopy, flow cytometry, and reverse transcription polymerase chain reaction, we observed cells with microglia morphology expressing a repertoire of markers associated with microglia: Iba1, CX3CR1, CD11b, TREM2, HexB, and P2RY12. These microglia-like cells maintain myeloid functional phenotypes including Aß peptide phagocytosis and induction of pro-inflammatory gene expression in response to lipopolysaccharide stimulation. Addition of small molecules BIO and SB431542, previously demonstrated to drive definitive hematopoiesis, resulted in decreased surface expression of TREM2. Together, these data suggest that mesodermal lineage specification followed by cytokine exposure produces microglia-like cells in vitro from human pluripotent stem cells and that this phenotype can be modulated by factors influencing hematopoietic lineage in vitro.


Asunto(s)
Linaje de la Célula/fisiología , Hematopoyesis/fisiología , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Células Madre Pluripotentes/metabolismo , Receptores Inmunológicos/metabolismo , Péptidos beta-Amiloides/metabolismo , Técnicas de Cultivo de Célula , Fibroblastos/citología , Fibroblastos/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos , Microglía/citología , Fagocitosis/fisiología , Células Madre Pluripotentes/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA