Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 188: 109750, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32526497

RESUMEN

Mercury pollution is a global environmental problem that threatens ecosystems, and negatively impacts human health and well-being. Mercury accumulation in fish within freshwater lakes is a complex process that appears to be driven by factors such as individual fish biology and water chemistry at the lake-scale, whereas, climate, and land-use/land-cover conditions within lake catchments can be influential at relatively larger scales. Nevertheless, unravelling the intricate network of pathways that govern how lake-scale and large-scale factors interact to affect mercury levels in fish remains an important scientific challenge. Using structural equation models (SEMs) and multiple long-term databases we identified direct and indirect effects of lake-scale and larger-scale factors on mercury levels in Walleye and Northern Pike - two species that are valued in inland fisheries. At the lake-level, the most parsimonious path models contained direct effects of fish weight, DOC, and pH, as well as an indirect effect of DOC on fish mercury levels via fish weight. Interestingly, lakeshed-, climate-, and full-path models that combine the effects of both lakeshed and climate revealed indirect effects of surrounding landscape conditions and latitude via DOC, pH, and fish weight but no direct effects on fish mercury levels. These results are generally consistent across species and lakes, except for some differences between stratified and non-stratified lakes. Our findings imply that understanding climate and land-use driven alterations of water chemistry and fish biology will be critical to predicting and mitigating fish mercury bioaccumulation in the future.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Animales , Ecosistema , Monitoreo del Ambiente , Peces , Humanos , Lagos , Mercurio/análisis , Mercurio/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
2.
Environ Sci Technol ; 48(2): 1023-31, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24383823

RESUMEN

The fate of mercury (Hg) deposited on forested upland soils depends on a wide array of biogeochemical and hydrological processes occurring in the soil landscape. In this study, Hg in soil, soilwater, and streamwater were measured across a forested upland subcatchment of the METAALICUS watershed in northwestern Ontario, Canada, where a stable Hg isotope (spike Hg) was applied to distinguish newly deposited Hg from Hg already resident in the watershed (ambient Hg). In total, we were able to account for 45% of the total mass of spike Hg applied to the subcatchment during the entire loading phase of the experiment, with approximately 22% of the total mass applied now residing in the top 15 cm of the mineral soil layer. Decreasing spike Hg/ambient Hg ratios with depth in the soil and soilwater suggest that spike Hg is less mobile than ambient Hg over shorter time scales. However, the transport of spike Hg into the mineral soil layer is enhanced in depressional areas where water table fluctuation is more extreme. While we expect that this pool of Hg is now effectively sequestered in the mineral horizon, future disturbance of the soil profile could remobilize this stored Hg in runoff.


Asunto(s)
Ecosistema , Mercurio/análisis , Contaminantes del Suelo/análisis , Suelo/química , Abastecimiento de Agua , Carbono/análisis , Isótopos de Mercurio/análisis , Ontario , Ríos/química
3.
Sci Total Environ ; 652: 278-288, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30366328

RESUMEN

In some cold regions up to 97% of the chloride (Cl-) entering rivers and lakes is derived from road salts that are applied to impervious surfaces to maintain safe winter travel conditions. While a portion of the Cl- applied as road salt is quickly flushed into streams during melt events via overland flow and flow through storm sewer pipes, the remainder enters the subsurface. Previous studies of individual watersheds have shown that between 28 and 77% of the applied Cl- is retained on an annual basis, however a systematic evaluation of the spatial variability in Cl- retention and potential driving factors has not been carried out. Here we used a mass balance approach to estimate annual Cl- retention in 11 watersheds located in southern Ontario, Canada, which span a gradient of urbanization. We evaluated the influence of multiple landscape variables on the magnitude of Cl- retention as well as the long-term rate of change in stream Cl-concentration for the same systems. We found that mean annual Cl- retention ranged from 40 to 90% and was higher for less urbanized watersheds and for watersheds with urban areas located farther from the stream outlet. This result suggests that less urbanized watersheds and ones with longer flow pathways have more Cl- partitioned into storage and hence the potential for legacy Cl- effects on aquatic organisms. While we did measure statistically significant increasing trends in stream Cl- concentration in some watersheds, there was no consistent relationship between the long-term rate of change in stream Cl- concentrations and patterns of urbanization and the magnitude of Cl- retention. Based on our results we present a detailed conceptual model of watershed Cl- dynamics that can be used to guide future research into the mechanisms of Cl- retention and release within a watershed.

4.
Environ Pollut ; 213: 628-637, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27017139

RESUMEN

In the Athabasca Oil Sands Region in northeastern Alberta, Canada, oil sands operators are testing the feasibility of peatland construction on the post-mining landscape. In 2009, Syncrude Canada Ltd. began construction of the 52 ha Sandhill Fen pilot watershed, including a 15 ha, hydrologically managed fen peatland built on sand-capped soft oil sands tailings. An integral component of fen reclamation is post-construction monitoring of water quality, including salinity, fluvial carbon, and priority pollutant elements. In this study, the effects of fen reclamation and elevated sulfate levels on mercury (Hg) fate and transport in the constructed system were assessed. Total mercury (THg) and methylmercury (MeHg) concentrations in the fen sediment were lower than in two nearby natural fens, which may be due to the higher mineral content of the Sandhill Fen peat mix and/or a loss of Hg through evasion during the peat harvesting, stockpiling and placement processes. Porewater MeHg concentrations in the Sandhill Fen typically did not exceed 1.0 ng L(-1). The low MeHg concentrations may be a result of elevated porewater sulfate concentrations (mean 346 mg L(-1)) and an increase in sulphide concentrations with depth in the peat, which are known to suppress MeHg production. Total Hg and MeHg concentrations increased during a controlled mid-summer flooding event where the water table rose above the ground surface in most of the fen. The Hg dynamics during this event showed that hydrologic fluctuations in this system exacerbate the release of THg and MeHg downstream. In addition, the elevated SO4(2-) concentrations in the peat porewaters may become a problem with respect to downstream MeHg production once the fen is hydrologically connected to a larger wetland network that is currently being constructed.


Asunto(s)
Sedimentos Geológicos/análisis , Compuestos de Metilmercurio/análisis , Contaminantes Químicos del Agua/análisis , Alberta , Monitoreo del Ambiente , Inundaciones , Mercurio/análisis , Yacimiento de Petróleo y Gas , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA