Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(15): e2208737120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011186

RESUMEN

The alarming rise in superbugs that are resistant to drugs of last resort, including vancomycin-resistant enterococci and staphylococci, has become a significant global health hazard. Here, we report the click chemistry synthesis of an unprecedented class of shapeshifting vancomycin dimers (SVDs) that display potent activity against bacteria that are resistant to the parent drug, including the ESKAPE pathogens, vancomycin-resistant Enterococcus (VRE), methicillin-resistant Staphylococcus aureus (MRSA), as well as vancomycin-resistant S. aureus (VRSA). The shapeshifting modality of the dimers is powered by a triazole-linked bullvalene core, exploiting the dynamic covalent rearrangements of the fluxional carbon cage and creating ligands with the capacity to inhibit bacterial cell wall biosynthesis. The new shapeshifting antibiotics are not disadvantaged by the common mechanism of vancomycin resistance resulting from the alteration of the C-terminal dipeptide with the corresponding d-Ala-d-Lac depsipeptide. Further, evidence suggests that the shapeshifting ligands destabilize the complex formed between the flippase MurJ and lipid II, implying the potential for a new mode of action for polyvalent glycopeptides. The SVDs show little propensity for acquired resistance by enterococci, suggesting that this new class of shapeshifting antibiotic will display durable antimicrobial activity not prone to rapidly acquired clinical resistance.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Enterococos Resistentes a la Vancomicina , Vancomicina/farmacología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana
2.
Angew Chem Int Ed Engl ; 59(30): 12460-12469, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32301265

RESUMEN

Diversity Oriented Clicking (DOC) is a unified click-approach for the modular synthesis of lead-like structures through application of the wide family of click transformations. DOC evolved from the concept of achieving "diversity with ease", by combining classic C-C π-bond click chemistry with recent developments in connective SuFEx-technologies. We showcase 2-Substituted-Alkynyl-1-Sulfonyl Fluorides (SASFs) as a new class of connective hub in concert with a diverse selection of click-cycloaddition processes. Through the selective DOC of SASFs with a range of dipoles and cyclic dienes, we report a diverse click-library of 173 unique functional molecules in minimal synthetic steps. The SuFExable library comprises 10 discrete heterocyclic core structures derived from 1,3- and 1,5-dipoles; while reaction with cyclic dienes yields several three-dimensional bicyclic Diels-Alder adducts. Growing the library to 278 discrete compounds through late-stage modification was made possible through SuFEx click derivatization of the pendant sulfonyl fluoride group in 96 well-plates-demonstrating the versatility of the DOC approach for the rapid synthesis of diverse functional structures. Screening for function against MRSA (USA300) revealed several lead hits with improved activity over methicillin.


Asunto(s)
Química Clic , Ácidos Sulfínicos/química , Reacción de Cicloadición , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA