Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 89(6): e0036723, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37272802

RESUMEN

Acetyl-CoA synthetase (ACS) and acetate ligase (ACD) are widespread among microorganisms, including archaea, and play an important role in their carbon metabolism, although only a few of these enzymes have been characterized. Anaerobic methanotrophs (ANMEs) have been reported to convert methane anaerobically into CO2, polyhydroxyalkanoate, and acetate. Furthermore, it has been suggested that they might be able to use acetate for anabolism or aceticlastic methanogenesis. To better understand the potential acetate metabolism of ANMEs, we characterized an ACS from ANME-2a as well as an ACS and an ACD from ANME-2d. The conversion of acetate into acetyl-CoA (Vmax of 8.4 µmol mg-1 min-1 and Km of 0.7 mM acetate) by the monomeric 73.8-kDa ACS enzyme from ANME-2a was more favorable than the formation of acetate from acetyl-CoA (Vmax of 0.4 µmol mg-1 min-1 and Km of 0.2 mM acetyl-CoA). The monomeric 73.4-kDa ACS enzyme from ANME-2d had similar Vmax values for both directions (Vmax,acetate of 0.9 µmol mg-1 min-1 versus Vmax,acetyl-CoA of 0.3 µmol mg-1 min-1). The heterotetrameric ACD enzyme from ANME-2d was active solely in the acetate-producing direction. Batch incubations of an enrichment culture dominated by ANME-2d fed with 13C2-labeled acetate produced 3 µmol of [13C]methane in 7 days, suggesting that this anaerobic methanotroph might have the potential to reverse its metabolism and perform aceticlastic methanogenesis using ACS to activate acetate albeit at low rates (2 nmol g [dry weight]-1 min-1). Together, these results show that ANMEs may have the potential to use acetate for assimilation as well as to use part of the surplus acetate for methane production. IMPORTANCE Acetyl-CoA plays a key role in carbon metabolism and is found at the junction of many anabolic and catabolic reactions. This work describes the biochemical properties of ACS and ACD enzymes from ANME-2 archaea. This adds to our knowledge of archaeal ACS and ACD enzymes, only a few of which have been characterized to date. Furthermore, we validated the in situ activity of ACS in ANME-2d, showing the conversion of acetate into methane by an enrichment culture dominated by ANME-2d.


Asunto(s)
Acetatos , Archaea , Archaea/metabolismo , Acetilcoenzima A/metabolismo , Anaerobiosis , Oxidación-Reducción , Acetatos/metabolismo , Carbono/metabolismo , Metano/metabolismo
2.
Nat Commun ; 15(1): 1477, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368447

RESUMEN

Anaerobic methanotrophic (ANME) archaea are environmentally important, uncultivated microorganisms that oxidize the potent greenhouse gas methane. During methane oxidation, ANME archaea engage in extracellular electron transfer (EET) with other microbes, metal oxides, and electrodes through unclear mechanisms. Here, we cultivate ANME-2d archaea ('Ca. Methanoperedens') in bioelectrochemical systems and observe strong methane-dependent current (91-93% of total current) associated with high enrichment of 'Ca. Methanoperedens' on the anode (up to 82% of the community), as determined by metagenomics and transmission electron microscopy. Electrochemical and metatranscriptomic analyses suggest that the EET mechanism is similar at various electrode potentials, with the possible involvement of an uncharacterized short-range electron transport protein complex and OmcZ nanowires.


Asunto(s)
Archaea , Bacterias , Archaea/genética , Archaea/metabolismo , Transporte de Electrón , Bacterias/metabolismo , Anaerobiosis , Electrones , Oxidación-Reducción , Metano/metabolismo
3.
Front Microbiol ; 13: 820989, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495668

RESUMEN

Anaerobic methanotrophic (ANME) archaea have recently been reported to be capable of using insoluble extracellular electron acceptors via extracellular electron transfer (EET). In this study, we investigated EET by a microbial community dominated by "Candidatus Methanoperedens" archaea at the anode of a bioelectrochemical system (BES) poised at 0 V vs. standard hydrogen electrode (SHE), in this way measuring current as a direct proxy of EET by this community. After inoculation of the BES, the maximum current density was 274 mA m-2 (stable current up to 39 mA m-2). Concomitant conversion of 13CH4 into 13CO2 demonstrated that current production was methane-dependent, with 38% of the current attributed directly to methane supply. Based on the current production and methane uptake in a closed system, the Coulombic efficiency was about 17%. Polarization curves demonstrated that the current was limited by microbial activity at potentials above 0 V. The metatranscriptome of the inoculum was mined for the expression of c-type cytochromes potentially used for EET, which led to the identification of several multiheme c-type cytochrome-encoding genes among the most abundant transcripts in "Ca. Methanoperedens." Our study provides strong indications of EET in ANME archaea and describes a system in which ANME-mediated EET can be investigated under laboratory conditions, which provides new research opportunities for mechanistic studies and possibly the generation of axenic ANME cultures.

4.
Nat Commun ; 13(1): 7085, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400771

RESUMEN

Anaerobic methanotrophic (ANME) archaea obtain energy from the breakdown of methane, yet their extrachromosomal genetic elements are little understood. Here we describe large plasmids associated with ANME archaea of the Methanoperedens genus in enrichment cultures and other natural anoxic environments. By manual curation we show that two of the plasmids are large (155,605 bp and 191,912 bp), circular, and may replicate bidirectionally. The plasmids occur in the same copy number as the main chromosome, and plasmid genes are actively transcribed. One of the plasmids encodes three tRNAs, ribosomal protein uL16 and elongation factor eEF2; these genes appear to be missing in the host Methanoperedens genome, suggesting an obligate interdependence between plasmid and host. Our work opens the way for the development of genetic vectors to shed light on the physiology and biochemistry of Methanoperedens, and potentially genetically edit them to enhance growth and accelerate methane oxidation rates.


Asunto(s)
Archaea , Metano , Archaea/metabolismo , Anaerobiosis , Metano/metabolismo , Oxidación-Reducción , Plásmidos/genética
5.
Front Microbiol ; 13: 798906, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35283857

RESUMEN

Microbial communities are key drivers of carbon, sulfur, and nitrogen cycling in coastal ecosystems, where they are subjected to dynamic shifts in substrate availability and exposure to toxic compounds. However, how these shifts affect microbial interactions and function is poorly understood. Unraveling such microbial community responses is key to understand their environmental distribution and resilience under current and future disturbances. Here, we used metagenomics and metatranscriptomics to investigate microbial community structure and transcriptional responses to prolonged ammonium deprivation, and sulfide and nitric oxide toxicity stresses in a controlled bioreactor system mimicking coastal sediment conditions. Ca. Nitrobium versatile, identified in this study as a sulfide-oxidizing denitrifier, became a rare community member upon ammonium removal. The ANaerobic Methanotroph (ANME) Ca. Methanoperedens nitroreducens showed remarkable resilience to both experimental conditions, dominating transcriptional activity of dissimilatory nitrate reduction to ammonium (DNRA). During the ammonium removal experiment, increased DNRA was unable to sustain anaerobic ammonium oxidation (anammox) activity. After ammonium was reintroduced, a novel anaerobic bacterial methanotroph species that we have named Ca. Methylomirabilis tolerans outcompeted Ca. Methylomirabilis lanthanidiphila, while the anammox Ca. Kuenenia stuttgartiensis outcompeted Ca. Scalindua rubra. At the end of the sulfide and nitric oxide experiment, a gammaproteobacterium affiliated to the family Thiohalobacteraceae was enriched and dominated transcriptional activity of sulfide:quinone oxidoreductases. Our results indicate that some community members could be more resilient to the tested experimental conditions than others, and that some community functions such as methane and sulfur oxidation coupled to denitrification can remain stable despite large shifts in microbial community structure. Further studies on complex bioreactor enrichments are required to elucidate coastal ecosystem responses to future disturbances.

6.
Microbiol Resour Announc ; 9(32)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32763928

RESUMEN

We present the high-quality draft genome of Methanobacterium subterraneum DF, a hydrogenotrophic methanogen that was isolated from deer feces. This organism has potentially been overlooked in previous studies. Interestingly, its genome encoded bile salt hydrolase, a crucial enzyme for bile salt tolerance that is found in gut organisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA