Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Chem Toxicol ; 178: 113904, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37356558

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by the degeneration of substantia nigra dopaminergic neurons. Many therapeutic strategies were explored for PD with no success. In this study, we investigated the efficacy of graphene oxide nanoparticles (GONPs) using the reserpine model of PD. Low concentrations GONPs were utilized as a therapeutic agent in many neurodegenerative diseases. We assessed the neurobehavioral alterations in the reserpine model of PD and investigated the neuroprotective and antioxidant effects of GONPs in this model. Thirty male mice were separated into three groups (N = 10): C (control); Res (Reserpine 0.25 mg/kg); Res + GONPs (Reserpine 0.25 mg/kg and GONPs 25 mg/kg). Our results showed that reserpine neurotoxicity induced hypoactivity with a significant increase of superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) levels in the brain and brainstem. GONPs reversed the reserpine-induced hypoactivity concomitant with decreased neuronal CAT and MDA levels. These findings support the potential use of GONPs as an antioxidant agent in the central nervous system (CNS) that protects against neurodegeneration in the reserpine PD model.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Enfermedad de Parkinson , Masculino , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , Reserpina/toxicidad , Reserpina/uso terapéutico , Modelos Animales de Enfermedad , Estrés Oxidativo , Antioxidantes/metabolismo , Neuronas Dopaminérgicas , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
2.
Biol Trace Elem Res ; 200(3): 1303-1311, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34176078

RESUMEN

At the industrial working conditions, lead exposure could induce several alterations for the human body. Subchronic lead exposure is linked with several injuries including cerebral and renal dysfunctions. The present work discusses the effects of subchronic lead toxicity (3 g/l) in drinking water during the period of treatment (6 weeks) on vasopressin system and epithelial cells in proximal tubules. Also, we aimed to evaluate the protective effect of curcumin-III administered orally by gavage (30 mg/kg BW), against subchronic Pb exposure in Meriones shawi. The biochemical and histopathological examinations demonstrate renal damages induced by lead toxicity. In addition, the behavioral and immunohistochemical studies revealed that Pb neurotoxicity exhibited an anxious behavior with a significant elevation of the vasopressin (AVP) staining within the paraventricular nuclei. The study showed also curcumin-III restored the renal alterations with an anxiolytic effect. Moreover, it restored the AVP level in the studying nuclei. Our work supports a possible link between AVP release and epithelial degeneration in the proximal tubules, and shows a new pharmacological effect of curcumin-III as an anxiolytic agent against lead toxicity.


Asunto(s)
Curcumina , Animales , Curcumina/farmacología , Células Epiteliales , Gerbillinae , Humanos , Plomo/toxicidad , Vasopresinas
3.
J Trace Elem Med Biol ; 71: 126933, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35066456

RESUMEN

BACKGROUND: Lead neurotoxicity is associated with numerous alterations including behavioral and neurochemical disruptions. This study evaluates the possible neurochemical disruption in the subcommissural organ (SCO) after acute (three days) and subchronic (six weeks) Pb-exposure inMeriones shawi, and the possible effect of the third active compound, curcumin-III, in mitigating the neurological alterations caused by lead exposure. METHODS: Using immunohistochemical stainings, we evaluated the Reissner's fiber (RF) secretion utilizing RF-antibody in the SCO. We compared both acute (25 mg/kg bw of Pb i.p. for 3 days) and subchronic (3 g/l of Pb in drinking water for six weeks) Pb-treatedMeriones shawi. RESULTS: The two models of lead exposure showed a significant increase in RF level in the SCO. Conversely, co-treatment with Curcumin-III at a dose of 30 mg/kg bw significantly ameliorate SCO secretory activity, as revealed by decreased RF-immunoreactivity. CONCLUSION: Together, our findings suggest the protective effects of Curcumin-III in regulating the secretory activity of the SCO after Pb-induced neuroanatomical disruptions of the SCO in Meriones.


Asunto(s)
Curcumina , Órgano Subcomisural , Animales , Plomo/análisis , Inmunohistoquímica , Gerbillinae , Órgano Subcomisural/química , Órgano Subcomisural/fisiología , Curcumina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA