Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 290(16): 9941-7, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25759388

RESUMEN

Agonist stimulation of G protein-coupled receptors (GPCRs) can transactivate epidermal growth factor receptors (EGFRs), but the precise mechanisms for this transactivation have not been defined. Key to this process is the protease-mediated "shedding" of membrane-tethered ligands, which then activate EGFRs. The specific proteases and the events involved in GPCR-EGFR transactivation are not fully understood. We have tested the hypothesis that transactivation can occur by a membrane-delimited process: direct increase in the activity of membrane type-1 matrix metalloprotease (MMP14, MT1-MMP) by heterotrimeric G proteins, and in turn, the generation of heparin-binding epidermal growth factor (HB-EGF) and activation of EGFR. Using membranes prepared from adult rat cardiac myocytes and fibroblasts, we found that MMP14 activity is increased by angiotensin II, phenylephrine, GTP, and guanosine 5'-O-[γ-thio]triphosphate (GTPγS). MMP14 activation by GTPγS occurs in a concentration- and time-dependent manner, does not occur in response to GMP or adenosine 5'-[γ-thio]triphosphate (ATPγS), and is not blunted by inhibitors of Src, PKC, phospholipase C (PLC), PI3K, or soluble MMPs. This activation is specific to MMP14 as it is inhibited by a specific MMP14 peptide inhibitor and siRNA knockdown. MMP14 activation by GTPγS is pertussis toxin-sensitive. A role for heterotrimeric G protein ßγ subunits was shown by using the Gßγ inhibitor gallein and the direct activation of recombinant MMP14 by purified ßγ subunits. GTPγS-stimulated activation of MMP14 also results in membrane release of HB-EGF and the activation of EGFR. These results define a previously unrecognized, membrane-delimited mechanism for EGFR transactivation via direct G protein activation of MMP14 and identify MMP14 as a heterotrimeric G protein-regulated effector.


Asunto(s)
Membrana Celular/metabolismo , Receptores ErbB/genética , Fibroblastos/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Metaloproteinasa 14 de la Matriz/genética , Angiotensina II/farmacología , Animales , Membrana Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Receptores ErbB/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Guanosina Trifosfato/farmacología , Masculino , Metaloproteinasa 14 de la Matriz/metabolismo , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Células 3T3 NIH , Toxina del Pertussis/farmacología , Fenilefrina/farmacología , Cultivo Primario de Células , Multimerización de Proteína , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Activación Transcripcional , Xantenos/farmacología
2.
Mol Pharmacol ; 88(1): 181-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25737495

RESUMEN

G protein-coupled receptors (GPCRs), the largest family of signaling receptors in the human genome, are also the largest class of targets of approved drugs. Are the optimal GPCRs (in terms of efficacy and safety) currently targeted therapeutically? Especially given the large number (∼ 120) of orphan GPCRs (which lack known physiologic agonists), it is likely that previously unrecognized GPCRs, especially orphan receptors, regulate cell function and can be therapeutic targets. Knowledge is limited regarding the diversity and identity of GPCRs that are activated by endogenous ligands and that native cells express. Here, we review approaches to define GPCR expression in tissues and cells and results from studies using these approaches. We identify problems with the available data and suggest future ways to identify and validate the physiologic and therapeutic roles of previously unrecognized GPCRs. We propose that a particularly useful approach to identify functionally important GPCRs with therapeutic potential will be to focus on receptors that show selective increases in expression in diseased cells from patients and experimental animals.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Terapia Molecular Dirigida , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Distribución Tisular
3.
J Neurosci ; 33(33): 13538-46, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23946412

RESUMEN

We recently showed that spinal synergistic interactions between δ opioid receptors (δORs) and α2A adrenergic receptors (α2AARs) require protein kinase C (PKC). To identify which PKC isoforms contribute to analgesic synergy, we evaluated the effects of various PKC-isoform-specific peptide inhibitors on synergy between δORs and α2AARs using the tail flick assay of thermal nociception in mice. Only a PKCε inhibitor abolished synergy between a δOR agonist and an α2AAR agonist. We tested a panel of combinations of opioid and adrenergic agonists in PKCε knock-out mice and found that all four combinations of a δOR agonist and an α2AAR agonist required PKCε for antinociceptive synergy. None of the combinations of a µOR agonist with an α2AR agonist required PKCε. Immunohistochemistry confirmed that PKCε could be found in the population of peptidergic primary afferent nociceptors where δORs and α2AARs have been found to extensively colocalize. Immunoreactivity for PKCε was found in the majority of dorsal root ganglion neurons and intensely labeled laminae I and II of the spinal cord dorsal horn. PKCε is widespread in the spinal nociceptive system and in peptidergic primary afferents it appears to be specifically involved in mediating the synergistic interaction between δORs and α2AARs.


Asunto(s)
Analgésicos/administración & dosificación , Anestesia Raquidea , Proteína Quinasa C-epsilon/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Opioides delta/metabolismo , Médula Espinal/efectos de los fármacos , Agonistas de Receptores Adrenérgicos alfa 2/administración & dosificación , Animales , Tartrato de Brimonidina , Clonidina/administración & dosificación , Sinergismo Farmacológico , Inhibidores Enzimáticos/farmacología , Femenino , Inmunohistoquímica , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oligopéptidos/administración & dosificación , Quinoxalinas/administración & dosificación , Receptores Opioides delta/agonistas , Médula Espinal/metabolismo
4.
J Neurosci ; 29(42): 13264-73, 2009 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-19846714

RESUMEN

Coactivation of spinal alpha(2)-adrenergic receptors (ARs) and opioid receptors produces antinociceptive synergy. Antinociceptive synergy between intrathecally administered alpha(2)AR and opioid agonists is well documented, but the mechanism underlying this synergy remains unclear. The delta-opioid receptor (DOP) and the alpha(2A)ARs are coexpressed on the terminals of primary afferent fibers in the spinal cord where they may mediate this phenomenon. We evaluated the ability of the DOP-selective agonist deltorphin II (DELT), the alpha(2)AR agonist clonidine (CLON) or their combination to inhibit calcitonin gene-related peptide (CGRP) release from spinal cord slices. We then examined the possible underlying signaling mechanisms involved through coadministration of inhibitors of phospholipase C (PLC), protein kinase C (PKC) or protein kinase A (PKA). Potassium-evoked depolarization of spinal cord slices caused concentration-dependent release of CGRP. Coadministration of DELT and CLON inhibited the release of CGRP in a synergistic manner as confirmed statistically by isobolograpic analysis. Synergy was dependent on the activation of PLC and PKC, but not PKA, whereas the effect of agonist administration alone was only dependent on PLC. The importance of these findings was confirmed in vivo, using a thermal nociceptive test, demonstrating the PKC dependence of CLON-DELT antinociceptive synergy in mice. That inhibition of CGRP release by the combination was maintained in the presence of tetrodotoxin in spinal cord slices suggests that synergy does not rely on interneuronal signaling and may occur within single subcellular compartments. The present study reveals a novel signaling pathway underlying the synergistic analgesic interaction between DOP and alpha(2)AR agonists in the spinal cord.


Asunto(s)
Proteína Quinasa C/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Opioides delta/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2 , Agonistas alfa-Adrenérgicos/farmacología , Anestésicos Locales/farmacología , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Clonidina/farmacología , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Sinergismo Farmacológico , Inhibidores Enzimáticos/farmacología , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Hiperalgesia/metabolismo , Técnicas In Vitro , Inyecciones Espinales/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Oligopéptidos/farmacología , Técnicas de Placa-Clamp/métodos , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Potasio/farmacología , Ratas , Ratas Sprague-Dawley , Receptores Opioides delta/agonistas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Médula Espinal/citología , Médula Espinal/metabolismo , Sustancia P/metabolismo , Tetrodotoxina/farmacología
5.
Brain Res Rev ; 60(1): 90-113, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19150465

RESUMEN

This review summarizes recent findings on peripheral mechanisms underlying the generation and inhibition of pain. The focus is on events occurring in peripheral injured tissues that lead to the sensitization and excitation of primary afferent neurons, and on the modulation of such mechanisms. Primary afferent neurons are of particular interest from a therapeutic perspective because they are the initial generator of noxious impulses traveling towards relay stations in the spinal cord and the brain. Thus, if one finds ways to inhibit the sensitization and/or excitation of peripheral sensory neurons, subsequent central events such as wind-up, sensitization and plasticity may be prevented. Most importantly, if agents are found that selectively modulate primary afferent function and do not cross the blood-brain-barrier, centrally mediated untoward side effects of conventional analgesics (e.g. opioids, anticonvulsants) may be avoided. This article begins with the peripheral actions of opioids, turns to a discussion of the effects of adrenergic co-adjuvants, and then moves on to a discussion of pro-inflammatory mechanisms focusing on TRP channels and nerve growth factor, their signaling pathways and arising therapeutic perspectives.


Asunto(s)
Analgésicos/farmacología , Ganglios Espinales/efectos de los fármacos , Nociceptores/efectos de los fármacos , Dolor/tratamiento farmacológico , Células Receptoras Sensoriales/efectos de los fármacos , Agonistas Adrenérgicos/farmacología , Analgésicos Opioides/farmacología , Animales , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/fisiopatología , Factor de Crecimiento Nervioso/efectos de los fármacos , Factor de Crecimiento Nervioso/metabolismo , Nociceptores/metabolismo , Dolor/metabolismo , Dolor/fisiopatología , Células Receptoras Sensoriales/metabolismo , Canales de Potencial de Receptor Transitorio/antagonistas & inhibidores , Canales de Potencial de Receptor Transitorio/metabolismo
6.
Ann N Y Acad Sci ; 1009: 82-105, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15028573

RESUMEN

Agmatine has been previously proposed to represent a novel neurotransmitter. One of the criteria required to test that hypothesis is that the exogenously administered chemical produces pharmacological effects similar to the physiological effects of the putative neurotransmitter. Since agmatine was first identified in brain, approximately sixty studies of the in vivo effects of exogenously administered agmatine have been reported. Despite the assertion that agmatine functions as a neuromodulator/neurotransmitter, the vast majority of experiments have administered agmatine through systemic (rather than central) routes of administration. Systemic delivery of agmatine for studies of centrally mediated phenomenon (e.g., pain, spinal cord injury, cardiovascular responses) relies on the presumption that agmatine (a polar compound) gains appreciable access to the CNS. The mechanism by which agmatine crosses the blood-brain barrier is not well understood. A number of studies have examined the in vivo effects of agmatine following central administration (e.g., intracerebroventricular and intrathecal). This paper summarizes and provides a comparison between the systemic versus central routes of administration for delivery of agmatine in experimental subjects.


Asunto(s)
Agmatina/administración & dosificación , Agmatina/farmacocinética , Encéfalo/metabolismo , Animales , Barrera Hematoencefálica/fisiología , Química Encefálica , Cromatografía Líquida de Alta Presión , Vías de Administración de Medicamentos
7.
J Comp Neurol ; 513(4): 385-98, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19180644

RESUMEN

Agonists acting at alpha(2)-adrenergic and opioid receptors (alpha(2)ARs and ORs, respectively) inhibit pain transmission in the spinal cord. When coadministered, agonists activating these receptors interact in a synergistic manner. Although the existence of alpha(2)AR/OR synergy has been well characterized, its mechanism remains poorly understood. The formation of heterooligomers has been proposed as a molecular basis for interactions between neuronal G-protein-coupled receptors. The relevance of heterooligomer formation to spinal analgesic synergy requires demonstration of the expression of both receptors within the same neuron as well as the localization of both receptors in the same neuronal compartment. We used immunohistochemistry to investigate the spatial relationship between alpha(2)ARs and ORs in the rat spinal cord to determine whether coexpression could be demonstrated between these receptors. We observed extensive colocalization between alpha(2A)-adrenergic and delta-opioid receptors (DOP) on substance P (SP)-immunoreactive (-ir) varicosities in the superficial dorsal horn of the spinal cord and in peripheral nerve terminals in the skin. alpha(2A)AR- and DOP-ir elements were colocalized in subcellular structures of 0.5 mum or less in diameter in isolated nerve terminals. Furthermore, coincubation of isolated synaptosomes with alpha(2)AR and DOP agonists resulted in a greater-than-additive increase in the inhibition of K(+)-stimulated neuropeptide release. These findings suggest that coexpression of the synergistic receptor pair alpha(2A)AR-DOP on primary afferent nociceptive fibers may represent an anatomical substrate for analgesic synergy, perhaps as a result of protein-protein interactions such as heterooligomerization.


Asunto(s)
Células del Asta Posterior/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Opioides delta/metabolismo , Sustancia P/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2 , Animales , Inmunohistoquímica , Masculino , Microscopía Confocal , Neuropéptidos/metabolismo , Nociceptores/metabolismo , Nociceptores/ultraestructura , Potasio/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Opioides delta/agonistas , Piel/inervación , Sinaptosomas/metabolismo
8.
J Neurochem ; 102(6): 1738-1748, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17539920

RESUMEN

Agmatine (decarboxylated arginine) was originally identified in the CNS as an imidazoline receptor ligand. Further studies demonstrated that agmatine antagonizes NMDA receptors and inhibits nitric oxide synthase. Intrathecally administered agmatine inhibits opioid tolerance and hyperalgesia evoked by inflammation, nerve injury, and intrathecally administered NMDA. These actions suggest an anti-glutamatergic role for agmatine in the spinal cord. We have previously reported that radiolabeled agmatine is transported into spinal synaptosomes in an energy- and temperature-dependent manner. In the present study, we demonstrate that agmatine is releasable from purified spinal nerve terminals upon depolarization. When exposed to either elevated potassium or capsaicin, tritiated agmatine (but not its precursor L-arginine or its metabolite putrescine) is released in a calcium-dependent manner. Control experiments confirmed that the observed release was specific to depolarization and not due to permeabilization of or degradation of synaptosomes. That capsaicin-evoked stimulation results in agmatine release implicates the participation of primary afferent nerve terminals. Radiolabeled agmatine also accumulates in purified spinal synaptosomal vesicles in a temperature-dependent manner, suggesting that the source of releasable agmatine may be vesicular in origin. These results support the proposal that agmatine may serve as a spinal neuromodulator involved in pain processing.


Asunto(s)
Vías Aferentes/metabolismo , Agmatina/metabolismo , Nociceptores/metabolismo , Terminales Presinápticos/metabolismo , Médula Espinal/metabolismo , Raíces Nerviosas Espinales/metabolismo , Vías Aferentes/efectos de los fármacos , Vías Aferentes/ultraestructura , Animales , Capsaicina/farmacología , Masculino , Fibras Nerviosas Amielínicas/efectos de los fármacos , Fibras Nerviosas Amielínicas/metabolismo , Fibras Nerviosas Amielínicas/ultraestructura , Nociceptores/efectos de los fármacos , Nociceptores/ultraestructura , Dolor/metabolismo , Dolor/fisiopatología , Cloruro de Potasio/metabolismo , Cloruro de Potasio/farmacología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/ultraestructura , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Médula Espinal/ultraestructura , Raíces Nerviosas Espinales/efectos de los fármacos , Raíces Nerviosas Espinales/ultraestructura , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Sinaptosomas/ultraestructura
9.
J Neurochem ; 100(1): 132-41, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17227436

RESUMEN

Agmatine (decarboxylated arginine) is an endogenous amine found in the CNS that antagonizes NMDA receptors and inhibits nitric oxide synthase. Intrathecally administered agmatine inhibits hyperalgesia evoked by inflammation, nerve injury and intrathecally administered NMDA. These actions suggest an antiglutamatergic neuromodulatory role for agmatine in the spinal cord. Such a function would require a mechanism of regulated clearance of agmatine such as neuronal or glial uptake. Consistent with this concept, radiolabeled agmatine has been shown to accumulate in synaptosomes, but the mechanism of this transport has not been fully characterized. The present study describes an agmatine uptake system in spinal synaptosomes that appears driven by a polyamine transporter. [(3)H]Agmatine uptake was Ca(2+), energy and temperature dependent. [(3)H]Agmatine transport was not moderated by L-arginine, L-glutamate, glycine, GABA, norepinephrine or serotonin. In contrast, [(3)H]agmatine uptake was concentration dependently inhibited by unlabeled putrescine and by unlabeled spermidine (at significantly higher concentrations). Similarly, [(3)H]putrescine uptake was inhibited in a concentration-dependent manner by unlabeled agmatine and spermidine. The polyamine analogs paraquat and methylglyoxal bis (guanylhydrazone) inhibited, whereas the polyamine transport enhancer difluoromethylornithine increased, [(3)H]agmatine transport. Taken together, these results suggest that agmatine transport into spinal synaptosomes may be governed by a polyamine transport mechanism.


Asunto(s)
Agmatina/metabolismo , Transporte Axonal/efectos de los fármacos , Poliaminas Biogénicas/farmacología , Nervios Espinales/ultraestructura , Sinaptosomas/efectos de los fármacos , Análisis de Varianza , Animales , Unión Competitiva/efectos de los fármacos , Calcio/metabolismo , Relación Dosis-Respuesta a Droga , Metabolismo Energético , Masculino , Microscopía Electrónica de Transmisión/métodos , Paraquat/farmacología , Putrescina/metabolismo , Piruvaldehído/farmacología , Ratas , Ratas Sprague-Dawley , Nervios Espinales/efectos de los fármacos , Nervios Espinales/metabolismo , Sinaptosomas/metabolismo , Sinaptosomas/ultraestructura , Temperatura , Factores de Tiempo , Triturus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA