Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Dev Biol ; 496: 36-51, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36736605

RESUMEN

Urp1 and Urp2 are two neuropeptides, members of the Urotensin 2 family, that have been recently involved in the control of body axis morphogenesis in zebrafish. They are produced by a population of sensory spinal neurons, called cerebrospinal fluid contacting neurons (CSF-cNs), under the control of signals relying on the Reissner fiber, an extracellular thread bathing in the CSF. Here, we have investigated further the function of Urp1 and Urp2 (Urp1/2) in body axis formation and maintenance. We showed that urp1;urp2 double mutants develop strong body axis defects during larval growth, revealing the redundancy between the two neuropeptides. These defects were similar to those previously reported in uts2r3 mutants. We observed that this phenotype is not associated with congenital defects in vertebrae formation, but by using specific inhibitors, we found that, at least in the embryo, the action of Urp1/2 signaling depends on myosin II contraction. Finally, we provide evidence that while the Urp1/2 signaling is functioning during larval growth, it is dispensable for embryonic development. Taken together, our results show that Urp1/2 signaling is required in larvae to promote correct vertebral body axis, most likely by regulating muscle tone.


Asunto(s)
Neuropéptidos , Pez Cebra , Animales , Larva , Columna Vertebral , Morfogénesis , Proteínas de Pez Cebra
2.
BMC Bioinformatics ; 20(1): 470, 2019 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-31521111

RESUMEN

BACKGROUND: Neurogenesis in the murine cerebral cortex involves the coordinated divisions of two main types of progenitor cells, whose numbers, division modes and cell cycle durations set up the final neuronal output. To understand the respective roles of these factors in the neurogenesis process, we combine experimental in vivo studies with mathematical modeling and numerical simulations of the dynamics of neural progenitor cells. A special focus is put on the population of intermediate progenitors (IPs), a transit amplifying progenitor type critically involved in the size of the final neuron pool. RESULTS: A multiscale formalism describing IP dynamics allows one to track the progression of cells along the subsequent phases of the cell cycle, as well as the temporal evolution of the different cell numbers. Our model takes into account the dividing apical progenitors (AP) engaged into neurogenesis, both neurogenic and proliferative IPs, and the newborn neurons. The transfer rates from one population to another are subject to the mode of division (proliferative, or neurogenic) and may be time-varying. The model outputs are successfully fitted to experimental cell numbers from mouse embryos at different stages of cortical development, taking into account IPs and neurons, in order to adjust the numerical parameters. We provide additional information on cell kinetics, such as the mitotic and S phase indexes, and neurogenic fraction. CONCLUSIONS: Applying the model to a mouse mutant for Ftm/Rpgrip1l, a gene involved in human ciliopathies with severe brain abnormalities, reveals a shortening of the neurogenic period associated with an increased influx of newborn IPs from apical progenitors at mid-neurogenesis. Our model can be used to study other mouse mutants with cortical neurogenesis defects and can be adapted to study the importance of progenitor dynamics in cortical evolution and human diseases.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Modelos Biológicos , Neurogénesis , Animales , Ciclo Celular , División Celular , Corteza Cerebral/fisiopatología , Proteínas del Citoesqueleto , Modelos Animales de Enfermedad , Humanos , Ratones , Mutación , Células-Madre Neurales/fisiología , Neuronas/fisiología , Proteínas/genética
3.
Gen Comp Endocrinol ; 279: 139-147, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30836103

RESUMEN

The somatostatin (SST) family members are a group of neuropeptides that are best known for their role in the regulation of growth, development and metabolism. The occurrence of six paralogous SST genes named SST1, SST2, SST3, SST4, SST5 and SST6 has been reported in vertebrates. It has been proposed that SST1, SST2 and SST5 arose in 2R from a common ancestral gene. SST3 and SST6 would have been subsequently generated by tandem duplications of the SST1 and SST2 genes respectively, at the base of the actinopterygian lineage. SST4 is thought to have appeared more recently from SST1, in teleost-specific 3R. In order to gain more insights into the SST gene family in vertebrates, we sought to identify which paralogs of this family are present in cartilaginous fish. For this purpose, we first searched the recently available genome and transcriptome databases from the catshark Scyliorhinus canicula. In a previous study, three S. canicula SST genes, called at that time SSTa, SSTb and SSTc, were identified and proposed to correspond to SST1, SST5 and SST2 respectively. In the present work, two additional SST genes, called SSTd and SSTe, were found in S. canicula plus two other chondrichtyan species, elephant shark (Callorhinchus milii) and whale shark (Rhincodon typus). Phylogeny and synteny analyses were then carried out in order to reveal the evolutionary relationships of SSTd and SSTe with other vertbrates SSTs. We showed that SSTd and SSTe correspond to SST2 and SST3 respectively, while SSTc corresponds to SST6 and not to SST2 as initially proposed. Our investigations in other vertebrate species also led us to find that the so-called SST2 gene in chicken, lungfish, sturgeons and teleosts actually corresponds to SST6. Conversely, the so-called SST6 gene in actinopterygians corresponds to SST2. Taken together, our results suggest that: i) SST3 and SST6 were already present in the gnathostome ancestor, much earlier than previously thought; ii) SST6 was also present in the tetrapod ancestor and still occurs in living birds; with this respect, it is likely that SST6 was independently lost several times during evolution: in amphibians, squamates and mammals; iii) SST2, SST3 and SST5 were probably lost in euteleosts, sarcopterygians and tetrapods, respectively.


Asunto(s)
Somatostatina/genética , Vertebrados/genética , Secuencia de Aminoácidos , Animales , ADN Complementario/genética , Sitios Genéticos , Genoma , Especificidad de Órganos/genética , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Somatostatina/química , Sintenía/genética , Transcriptoma/genética
4.
J Cell Sci ; 127(Pt 21): 4634-44, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25217625

RESUMEN

There is growing evidence that activation of the Notch pathway can result in consequences on cell morphogenesis and behaviour, both during embryonic development and cancer progression. In general, Notch is proposed to coordinate these processes by regulating expression of key transcription factors. However, many Notch-regulated genes identified in genome-wide studies are involved in fundamental aspects of cell behaviour, suggesting a more direct influence on cellular properties. By testing the functions of 25 such genes we confirmed that 12 are required in developing adult muscles, consistent with roles downstream of Notch. Focusing on three, Reck, rhea/talin and trio, we verify their expression in adult muscle progenitors and identify Notch-regulated enhancers in each. Full activity of these enhancers requires functional binding sites for Su(H), the DNA-binding transcription factor in the Notch pathway, validating their direct regulation. Thus, besides its well-known roles in regulating the expression of cell-fate-determining transcription factors, Notch signalling also has the potential to directly affect cell morphology and behaviour by modulating expression of genes such as Reck, rhea/talin and trio. This sheds new light on the functional outputs of Notch activation in morphogenetic processes.


Asunto(s)
Proteínas de Drosophila/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Notch/metabolismo , Células Madre/citología , Células Madre/metabolismo , Talina/metabolismo , Animales , Drosophila , Proteínas de Drosophila/genética , Factores de Intercambio de Guanina Nucleótido/genética , Hibridación in Situ , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Músculos/citología , Músculos/metabolismo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Receptores Notch/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Talina/genética
5.
Biol Aujourdhui ; 216(3-4): 89-103, 2022.
Artículo en Francés | MEDLINE | ID: mdl-36744974

RESUMEN

The caudal neurosecretory system (CNSS) is a neuroendocrine complex whose existence is specific to fishes. Structurally, it has many similarities with the hypothalamic-neurohypophyseal complex of other vertebrates. However, it differs regarding its position at the caudal end of the spinal cord and the nature of the hormones it secretes, the most important being urotensins. The CNSS was first described more than 60 years ago, but its embryological origin is totally unknown and its role is still poorly understood. Paradoxically, it is almost no longer studied today. Recent developments in imaging and genome editing could make it possible to resume investigations on CNSS in order to solve the mysteries that still surround it.


Title: Le système neurosécréteur caudal, l'autre système « neurohypophysaire ¼ des poissons. Abstract: Le système neurosécréteur caudal (SNSC) est un complexe neuroendocrinien propre aux poissons. Sur le plan structural, il présente de nombreuses similitudes avec le complexe hypothalamo-neurohypophysaire d'autres vertébrés. Il s'en distingue toutefois par sa position, à l'extrémité caudale de la moelle épinière, et par la nature des hormones qu'il sécrète, les plus importantes étant les urotensines. Le SNSC a été décrit pour la première fois il y a plus de 60 ans, mais son origine embryologique est totalement inconnue et son rôle reste mal compris. Paradoxalement, il n'est presque plus étudié aujourd'hui. Les développements récents en imagerie et en génie génétique pourraient justifier la reprise d'investigations sur le SNSC afin de lever les mystères qui continuent de l'entourer.


Asunto(s)
Sistemas Neurosecretores , Urotensinas , Animales , Peces , Médula Espinal
6.
Curr Biol ; 18(4): 276-81, 2008 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-18291651

RESUMEN

During gastrulation, dramatic movements rearrange cells into three germ layers expanded over the entire embryo [1-3]. In fish, both endoderm and mesoderm are specified as a belt at the embryo margin. Mesodermal layer expansion is achieved through the combination of two directed migrations. The outer ring of precursors moves toward the vegetal pole and continuously seeds mesodermal cells inside the embryo, which then reverse their movement in the direction of the animal pole [3-6]. Unlike mesoderm, endodermal cells internalize at once and must therefore adopt a different strategy to expand over the embryo [7, 8]. With live imaging of YFP-expressing zebrafish endodermal cells, we demonstrate that in contrast to mesoderm, internalized endodermal cells display a nonoriented/noncoordinated movement fit by a random walk that rapidly disperses them over the yolk surface. Transplantation experiments reveal that this behaviour is largely cell autonomous, induced by TGF-beta/Nodal, and dependent on the downstream effector Casanova. At midgastrulation, endodermal cells switch to a convergence movement. We demonstrate that this switch is triggered by environmental cues. These results uncover random walk as a novel Nodal-induced gastrulation movement and as an efficient strategy to transform a localized cell group into a layer expanded over the embryo.


Asunto(s)
Movimiento Celular/fisiología , Endodermo/citología , Gastrulación/fisiología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/fisiología , Inducción Embrionaria/fisiología , Endodermo/fisiología , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteína Nodal , Factores de Transcripción SOX , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Pez Cebra/fisiología , Proteínas de Pez Cebra/metabolismo
7.
Peptides ; 146: 170675, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34655691

RESUMEN

The urotensin 2 (uts2) gene family consists of four paralogs called uts2, uts2-related peptide (urp), urp1 and urp2. uts2 is known to exert a large array of biological effects, including osmoregulation, control of cardiovascular functions and regulation of endocrine activities. Lately, urp1 and urp2 have been shown to regulate axial straightening during embryogenesis. In contrast, much less is known about the roles of urp. The aim of the present study was to investigate the expression and the functions of urp by using the zebrafish as a model. For this purpose, we determined the expression pattern of the urp gene. We found that urp is expressed in motoneurons of the brainstem and the spinal cord, as in tetrapods. This was confirmed with a new Tg(urp:gfp) fluorescent reporter line. We also generated a urp knockout mutant by using CRISPR/Cas9-mediated genome editing and analysed its locomotor activity in larvae. urp mutant did not exhibit any apparent defect of spontaneous swimming when compared to wild-type. We also tested the idea that urp may represent an intermediary of urp1 and urp2 in their role on axial straightening. We found that the upward bending of the tail induced by the overexpression of urp2 in 24-hpf embryos was not altered in urp mutants. Our results indicate that urp does probably not act as a relay downstream of urp2. In conclusion, the present study showed that zebrafish urp gene is primarily expressed in motoneurons but is apparently dispensable for locomotor activity in the early larval stages.


Asunto(s)
Larva/metabolismo , Locomoción , Neuronas Motoras/metabolismo , Péptidos/metabolismo , Urotensinas/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Edición Génica/métodos , Hibridación in Situ , Pez Cebra/crecimiento & desarrollo
8.
Open Biol ; 11(8): 210065, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34375549

RESUMEN

Urp1 and Urp2 are two neuropeptides of the urotensin II family identified in teleost fish and mainly expressed in cerebrospinal fluid (CSF)-contacting neurons. It has been recently proposed that Urp1 and Urp2 are required for correct axis formation and maintenance. Their action is thought to be mediated by the receptor Uts2r3, which is specifically expressed in dorsal somites. In support of this view, it has been demonstrated that the loss of uts2r3 results in severe scoliosis in adult zebrafish. In the present study, we report for the first time the occurrence of urp2, but not of urp1, in two tetrapod species of the Xenopus genus. In X. laevis, we show that urp2 mRNA-containing cells are CSF-contacting neurons. Furthermore, we identified utr4, the X. laevis counterparts of zebrafish uts2r3, and we demonstrate that, as in zebrafish, it is expressed in the dorsal somatic musculature. Finally, we reveal that, in X. laevis, the disruption of utr4 results in an abnormal curvature of the antero-posterior axis of the tadpoles. Taken together, our results suggest that the role of the Utr4 signalling pathway in the control of body straightness is an ancestral feature of bony vertebrates and not just a peculiarity of ray-finned fishes.


Asunto(s)
Evolución Biológica , Regulación del Desarrollo de la Expresión Génica , Filogenia , Receptores Acoplados a Proteínas G/metabolismo , Somatotipos , Urotensinas/metabolismo , Proteínas de Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Perfilación de la Expresión Génica , Receptores Acoplados a Proteínas G/genética , Homología de Secuencia , Proteínas de Xenopus/genética , Xenopus laevis
9.
PLoS Biol ; 5(10): e277, 2007 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-17941721

RESUMEN

Sleep is a fundamental biological process conserved across the animal kingdom. The study of how sleep regulatory networks are conserved is needed to better understand sleep across evolution. We present a detailed description of a sleep state in adult zebrafish characterized by reversible periods of immobility, increased arousal threshold, and place preference. Rest deprivation using gentle electrical stimulation is followed by a sleep rebound, indicating homeostatic regulation. In contrast to mammals and similarly to birds, light suppresses sleep in zebrafish, with no evidence for a sleep rebound. We also identify a null mutation in the sole receptor for the wake-promoting neuropeptide hypocretin (orexin) in zebrafish. Fish lacking this receptor demonstrate short and fragmented sleep in the dark, in striking contrast to the excessive sleepiness and cataplexy of narcolepsy in mammals. Consistent with this observation, we find that the hypocretin receptor does not colocalize with known major wake-promoting monoaminergic and cholinergic cell groups in the zebrafish. Instead, it colocalizes with large populations of GABAergic neurons, including a subpopulation of Adra2a-positive GABAergic cells in the anterior hypothalamic area, neurons that could assume a sleep modulatory role. Our study validates the use of zebrafish for the study of sleep and indicates molecular diversity in sleep regulatory networks across vertebrates.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido/metabolismo , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo , Sueño/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Secuencia de Aminoácidos , Animales , Nivel de Alerta/fisiología , Conducta Animal/fisiología , Monoaminas Biogénicas/metabolismo , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Homeostasis , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Luz , Datos de Secuencia Molecular , Neuropéptidos/metabolismo , Receptores de Orexina , Orexinas , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropéptido/genética , Alineación de Secuencia , Privación de Sueño , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
10.
Elife ; 92020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33048048

RESUMEN

The cerebrospinal fluid (CSF) contains an extracellular thread conserved in vertebrates, the Reissner fiber, which controls body axis morphogenesis in the zebrafish embryo. Yet, the signaling cascade originating from this fiber to ensure body axis straightening is not understood. Here, we explore the functional link between the Reissner fiber and undifferentiated spinal neurons contacting the CSF (CSF-cNs). First, we show that the Reissner fiber is required in vivo for the expression of urp2, a neuropeptide expressed in CSF-cNs. We show that the Reissner fiber is also required for embryonic calcium transients in these spinal neurons. Finally, we study how local adrenergic activation can substitute for the Reissner fiber-signaling pathway to CSF-cNs and rescue body axis morphogenesis. Our results show that the Reissner fiber acts on CSF-cNs and thereby contributes to establish body axis morphogenesis, and suggest it does so by controlling the availability of a chemical signal in the CSF.


Asunto(s)
Líquido Cefalorraquídeo/metabolismo , Neuronas/fisiología , Nervios Espinales/embriología , Pez Cebra/embriología , Animales , Embrión no Mamífero/embriología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Expresión Génica , Morfogénesis/fisiología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Transducción de Señal , Pez Cebra/genética
12.
Gene Expr Patterns ; 6(8): 835-42, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16545988

RESUMEN

The secreted frizzled-related proteins (Sfrp) are a family of soluble proteins with diverse biological functions having the capacity to bind Wnt ligands, to modulate Wnt signalling, and to signal directly via the Wnt receptor, Frizzled. In an enhancer trap screen for embryonic expression in zebrafish we identified an sfrp1 gene. Previous studies suggest an important role for sfrp1 in eye development, however, no data have been reported using the zebrafish model. In this paper, we describe duplicate sfrp1 genes in zebrafish and present a detailed analysis of the expression profile of both genes. Whole mount in situ hybridisation analyses of sfrp1a during embryonic and larval development revealed a dynamic expression profile, including: the central nervous system, where sfrp1a was regionally expressed throughout the brain and developing eye; the posterior gut, from the time of endodermal cell condensation; the lateral line, where sfrp1a was expressed in the migrating primordia and interneuromast cells that give rise to the sensory organs. Other sites included the blastoderm, segmenting mesoderm, olfactory placode, developing ear, pronephros and fin-bud. We have also analysed sfrp1b expression during embryonic development. Surprisingly this gene exhibited a divergent expression profile being limited to the yolk syncytium under the elongating tail-bud, which later covered the distal yolk extension, and transiently in the tail-bud mesenchyme. Overall, our studies provide a basis for future analyses of these developmentally important factors using the zebrafish model.


Asunto(s)
Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Gástrula/metabolismo , Proteínas/genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Fase de Segmentación del Huevo/metabolismo , Embrión no Mamífero , Ojo/embriología , Ojo/metabolismo , Duplicación de Gen , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular , Mesodermo/metabolismo , Datos de Secuencia Molecular , Filogenia , Proteínas/metabolismo , Homología de Secuencia de Aminoácido , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
13.
PLoS One ; 3(1): e1434, 2008 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-18197245

RESUMEN

The EGF-CFC factor Oep/Cripto1/Frl1 has been implicated in embryogenesis and several human cancers. During vertebrate development, Oep/Cripto1/Frl1 has been shown to act as an essential coreceptor in the TGFbeta/Nodal pathway, which is crucial for germ layer formation. Although studies in cell cultures suggest that Oep/Cripto1/Frl1 is also implicated in other pathways, in vivo it is solely regarded as a Nodal coreceptor. We have found that Rasl11b, a small GTPase belonging to a Ras subfamily of putative tumor suppressor genes, modulates Oep function in zebrafish independently of the Nodal pathway. rasl11b down regulation partially rescues endodermal and prechordal plate defects of zygotic oep(-/-) mutants (Zoep). Rasl11b inhibitory action was only observed in oep-deficient backgrounds, suggesting that normal oep expression prevents Rasl11b function. Surprisingly, rasl11b down regulation does not rescue mesendodermal defects in other Nodal pathway mutants, nor does it influence the phosphorylation state of the downstream effector Smad2. Thus, Rasl11b modifies the effect of Oep on mesendoderm development independently of the main known Oep output: the Nodal signaling pathway. This data suggests a new branch of Oep signaling that has implications for germ layer development, as well as for studies of Oep/Frl1/Cripto1 dysfunction, such as that found in tumors.


Asunto(s)
Proteínas de Homeodominio/genética , Proteínas de Unión al GTP Monoméricas/genética , Mutación , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Animales , Secuencia de Bases , Cartilla de ADN , Mutagénesis , Fenotipo , Fosforilación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína Smad2/metabolismo , Pez Cebra
14.
Dev Dyn ; 237(8): 2195-208, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18627100

RESUMEN

Activity of zebrafish hoxb4a in the developing brain was analyzed in comparison to hoxa4a and hoxd4a using unique enhancer detection transgenes. Cytoplasmic YFP revealed shape and axonal projections of neurons in animals with insertions near the Hox4 genes and provided a means for the identification of neuronal subtypes. Despite an early activity of the genes in neuroepithelial cells and later in immature postmitotic neurons, we found reporter expression in distinct neuronal subtypes in the r7-r8-derived hindbrain. Most strikingly, hoxb4a neuronal subtypes projected through the vagus and into the pectoral fin while others formed symmetrically located fiber tracts innervating the cerebellum and the tectum, features that are partially shared by the other two paralogs. Collectively, our expression analysis indicates that hoxb4a in combination with its paralogs may play a significant role in the development of precerebellar, vagal, and pectoral fin neuronal subtypes.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Proteínas de Homeodominio/genética , Neuronas/clasificación , Neuronas/fisiología , Rombencéfalo/embriología , Proteínas de Pez Cebra/genética , Animales , Región Branquial/citología , Región Branquial/embriología , Región Branquial/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Formación Reticular/citología , Formación Reticular/embriología , Formación Reticular/fisiología , Rombencéfalo/citología , Rombencéfalo/fisiología , Transgenes/genética , Nervio Vago/citología , Nervio Vago/embriología , Nervio Vago/fisiología , Pez Cebra
15.
Genome Res ; 17(5): 545-55, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17387144

RESUMEN

We report evidence for a mechanism for the maintenance of long-range conserved synteny across vertebrate genomes. We found the largest mammal-teleost conserved chromosomal segments to be spanned by highly conserved noncoding elements (HCNEs), their developmental regulatory target genes, and phylogenetically and functionally unrelated "bystander" genes. Bystander genes are not specifically under the control of the regulatory elements that drive the target genes and are expressed in patterns that are different from those of the target genes. Reporter insertions distal to zebrafish developmental regulatory genes pax6.1/2, rx3, id1, and fgf8 and miRNA genes mirn9-1 and mirn9-5 recapitulate the expression patterns of these genes even if located inside or beyond bystander genes, suggesting that the regulatory domain of a developmental regulatory gene can extend into and beyond adjacent transcriptional units. We termed these chromosomal segments genomic regulatory blocks (GRBs). After whole genome duplication in teleosts, GRBs, including HCNEs and target genes, were often maintained in both copies, while bystander genes were typically lost from one GRB, strongly suggesting that evolutionary pressure acts to keep the single-copy GRBs of higher vertebrates intact. We show that loss of bystander genes and other mutational events suffered by duplicated GRBs in teleost genomes permits target gene identification and HCNE/target gene assignment. These findings explain the absence of evolutionary breakpoints from large vertebrate chromosomal segments and will aid in the recognition of position effect mutations within human GRBs.


Asunto(s)
Secuencia Conservada , Regulación de la Expresión Génica/fisiología , Sintenía , Pez Cebra/genética , Animales , Pollos/genética , Evolución Molecular , Duplicación de Gen , Ligamiento Genético , Genoma Humano , Humanos , Tetraodontiformes/genética
16.
Dev Biol ; 297(1): 26-43, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16860306

RESUMEN

The expression of zebrafish hoxb3a and hoxb4a has been found to be mediated through five transcripts, hoxb3a transcripts I-III and hoxb4a transcripts I-II, driven by four promoters. A "master" promoter, located about 2 kb downstream of hoxb5a, controls transcription of a pre-mRNA comprising exon sequences of both genes. This unique gene structure is proposed to provide a novel mechanism to ensure overlapping, tissue-specific expression of both genes in the posterior hindbrain and spinal cord. Transgenic approaches were used to analyze the functions of zebrafish hoxb3a/hoxb4a promoters and enhancer sequences containing regions of homology that were previously identified by comparative genomics. Two neural enhancers were shown to establish specific anterior expression borders within the hindbrain and mediate expression in defined neuronal populations derived from hindbrain rhombomeres (r) 5 to 8, suggesting a late role of the genes in neuronal cell lineage specification. Species comparison showed that the zebrafish hoxb3a r5 and r6 enhancer corresponded to a sequence within the mouse HoxA cluster controlling activity of Hoxa3 in r5 and r6, whereas a homologous region within the HoxB cluster activated Hoxb3 expression but limited to r5. We conclude that the similarity of hoxb3a/Hoxa3 regulatory mechanisms reflect the shared descent of both genes from a single ancestral paralog group 3 gene.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Regiones Promotoras Genéticas/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Embrión no Mamífero , Elementos de Facilitación Genéticos/genética , Exones , Femenino , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rombencéfalo/citología , Rombencéfalo/embriología , Homología de Secuencia de Ácido Nucleico , Proteínas de Xenopus/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/metabolismo
17.
J Cell Sci ; 118(Pt 13): 2891-9, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15976448

RESUMEN

By using the yeast two-hybrid technique, we identified a candidate protein ligand of the myosin 1c tail, PHR1, and found that this protein can also bind to the myosin VIIa tail. PHR1 is an integral membrane protein that contains a pleckstrin homology (PH) domain. Myosin 1c and myosin VIIa are two unconventional myosins present in the inner ear sensory cells. We showed that PHR1 immunoprecipitates with either myosin tail by using protein extracts from cotransfected HEK293 cells. In vitro binding assays confirmed that PHR1 directly interacts with these two myosins. In both cases the binding involves the PH domain. In vitro interactions between PHR1 and the myosin tails were not affected by the presence or absence of Ca2+ and calmodulin. Finally, we found that PHR1 is able to dimerise. As PHR1 is expressed in the vestibular and cochlear sensory cells, its direct interactions with the myosin 1c and VIIa tails are likely to play a role in anchoring the actin cytoskeleton to the plasma membrane of these cells. Moreover, as both myosins have been implicated in the mechanotransduction slow adaptation process that takes place in the hair bundles, we propose that PHR1 is also involved in this process.


Asunto(s)
Dineínas/metabolismo , Células Ciliadas Auditivas Internas/química , Proteínas de la Membrana/metabolismo , Miosinas/metabolismo , Animales , Línea Celular , Dineínas/genética , Células Ciliadas Auditivas Internas/metabolismo , Humanos , Proteínas de la Membrana/genética , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Miosina Tipo I , Miosina VIIa , Miosinas/genética
18.
EMBO J ; 21(19): 5151-63, 2002 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-12356731

RESUMEN

IEX-1 is an early response and NF-kappaB target gene implicated in the regulation of cellular viability. We show here that IEX-1 is a substrate for ERKs and that IEX-1 and ERK regulate each other's activities. IEX-1 was isolated by phosphorylation screening with active ERK2 and found subsequently phosphorylated in vivo upon ERK activation. IEX-1 interacts with phosphorylated ERKs but not with c-jun N-terminal kinase (JNK) or p38. Upon phosphorylation by ERKs, IEX-1 acquires the ability to inhibit cell death induced by various stimuli. In turn, IEX-1 potentiates ERK activation in response to various growth factors. By using various IEX-1 mutants in which the ERK phosphoacceptor and/or ERK docking sites were mutated, we show that the IEX-1 pro-survival effect is dependent on its phosphorylation state but not on its ability to potentiate ERK activation. Conversely, IEX-1-induced modulation of ERK activation requires ERK-IEX-1 association but is independent of IEX-1 phosphorylation. Thus, IEX-1 is a new type of ERK substrate that has a dual role in ERK signaling by acting both as an ERK downstream effector mediating survival and as a regulator of ERK activation.


Asunto(s)
Supervivencia Celular/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Reguladoras de la Apoptosis , Muerte Celular , Línea Celular , Activación Enzimática , Biblioteca de Genes , Glutatión Transferasa/metabolismo , Humanos , Proteínas de la Membrana , Fosforilación , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA