Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Express ; 29(6): 8770-8776, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33820318

RESUMEN

Optical sensing applications are usually reliant on the intensity of the measured signal. For remote sensing applications where a target is probed with a laser beam, the sensitivity will be limited by the amount of backscattered light returned from the target to the detector. We demonstrate a method of increasing the signal returned to the detector by illuminating the target with a number of independently controlled beams, where both the position and phase are optimised. We show an improvement in the backscattered signal that is proportional to the number of beams used. The method is demonstrated within a laser microphone, measuring audio signal due to vibrations in surfaces, showing a significant improvement in the signal-to-noise of the measurement.

2.
Proc Natl Acad Sci U S A ; 115(22): 5681-5685, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29760051

RESUMEN

The sorting of objects into groups is a fundamental operation, critical in the preparation and purification of populations of cells, crystals, beads, or droplets, necessary for research and applications in biology, chemistry, and materials science. Most of the efforts exploring such purification have focused on two areas: the degree of separation and the measurement precision required for effective separation. Conventionally, achieving good separation ultimately requires that the objects are considered one by one (which can be both slow and expensive), and the ability to measure the sorted objects by increasing sensitivity as well as reducing sorting errors. Here we present an approach to sorting that addresses both critical limitations with a scheme that allows us to approach the theoretical limit for the accuracy of sorting decisions. Rather than sorting individual objects, we sort the objects in ensembles, via a set of registers which are then in turn sorted themselves into a second symmetric set of registers in a lossless manner. By repeating this process, we can arrive at high sorting purity with a low set of constraints. We demonstrate both the theory behind this idea and identify the critical parameters (ensemble population and sorting time), and show the utility and robustness of our method with simulations and experimental systems spanning several orders of scale, sorting populations of macroscopic beads and microfluidic droplets. Our method is general in nature and simplifies the sorting process, and thus stands to enhance many different areas of science, such as purification, enrichment of rare objects, and separation of dynamic populations.

3.
Proc Natl Acad Sci U S A ; 115(15): 3800-3803, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29581257

RESUMEN

The linear Doppler shift is familiar as the rise and fall in pitch of a siren as it passes by. Less well known is the rotational Doppler shift, proportional to the rotation rate between source and receiver, multiplied by the angular momentum carried by the beam. In extreme cases the Doppler shift can be larger than the rest-frame frequency and for a red shift, the observed frequency then becomes "negative." In the linear case, this effect is associated with the time reversal of the received signal, but it can be observed only with supersonic relative motion between the source and receiver. However, the rotational case is different; if the radius of rotation is smaller than the wavelength, then the velocities required to observe negative frequencies are subsonic. Using an acoustic source at [Formula: see text]100 Hz we create a rotational Doppler shift larger than the laboratory-frame frequency. We observe that once the red-shifted wave passes into the "negative frequency" regime, the angular momentum associated with the sound is reversed in sign compared with that of the laboratory frame. These low-velocity laboratory realizations of extreme Doppler shifts have relevance to superoscillatory fields and offer unique opportunities to probe interactions with rotating bodies and aspects of pseudorelativistic frame translation.

4.
Opt Express ; 28(19): 28190-28208, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32988095

RESUMEN

Modern cameras typically use an array of millions of detector pixels to capture images. By contrast, single-pixel cameras use a sequence of mask patterns to filter the scene along with the corresponding measurements of the transmitted intensity which is recorded using a single-pixel detector. This review considers the development of single-pixel cameras from the seminal work of Duarte et al. up to the present state of the art. We cover the variety of hardware configurations, design of mask patterns and the associated reconstruction algorithms, many of which relate to the field of compressed sensing and, more recently, machine learning. Overall, single-pixel cameras lend themselves to imaging at non-visible wavelengths and with precise timing or depth resolution. We discuss the suitability of single-pixel cameras for different application areas, including infrared imaging and 3D situation awareness for autonomous vehicles.

5.
Opt Express ; 28(12): 18180-18188, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32680019

RESUMEN

Single-pixel imaging systems can obtain images from a wide range of wavelengths at low-cost compared to those using conventional multi-pixel, focal-plane array sensors, especially at wavelengths outside the visible spectrum. The ability to sense short-wave infrared radiation with single-pixel techniques extends imaging capability to adverse weather conditions and environments, such as fog, haze, or night time. In this work, we demonstrate a dual-band single-pixel telescope for imaging at both visible (VIS) and short-wave infrared (SWIR) spectral regions simultaneously under some of these outdoor weather conditions. At 64 × 64 pixel-resolution, our system has achieved continuous VIS and SWIR imaging of various objects at a frame rate up to 2.4 Hz. Visual and contrast comparison between the reconstructed VIS and SWIR images emphasizes the significant contribution of infrared observation using the single-pixel technique. The single-pixel telescope provides an alternative cost-effective imaging solution for synchronized dual-waveband optical applications.

6.
Opt Express ; 28(13): 18566-18576, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32672155

RESUMEN

We have developed a portable gas imaging camera for identifying methane leaks in real-time. The camera uses active illumination from distributed feedback InGaAs laser diodes tuned to the 1653 nm methane absorption band. An InGaAs focal plane sensor array images the active illumination. The lasers are driven off resonance every alternate frame so that computer vision can extract the gas data. A colour image is captured simultaneously and the data is superimposed to guide the operator. Image stabilisation has been employed to allow detection with a moving camera, successfully imaging leaks from mains pressure gas supplies at a range of up to 3 m and flow rates as low as 0.05 L min-1.

7.
Opt Express ; 27(7): 9829-9837, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31045141

RESUMEN

Single-pixel cameras reconstruct images from a stream of spatial projection measurements recorded with a single-element detector, which itself has no spatial resolution. This enables the creation of imaging systems that can take advantage of the ultra-fast response times of single-element detectors. Here we present a single-pixel camera with a temporal resolution of 200 ps in the visible and short-wave infrared wavelengths, used here to study the transit time of distinct spatial modes transmitted through few-mode and orbital angular momentum mode conserving optical fiber. Our technique represents a way to study the spatial and temporal characteristics of light propagation in multimode optical fibers, which may find use in optical fiber design and communications.

8.
Phys Rev Lett ; 123(11): 110401, 2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31573252

RESUMEN

Although quantum physics is well understood in inertial reference frames (flat spacetime), a current challenge is the search for experimental evidence of nontrivial or unexpected behavior of quantum systems in noninertial frames. Here, we present a novel test of quantum mechanics in a noninertial reference frame: we consider Hong-Ou-Mandel (HOM) interference on a rotating platform and study the effect of uniform rotation on the distinguishability of the photons. Both theory and experiments show that the rotational motion induces a relative delay in the photon arrival times at the exit beam splitter and that this delay is observed as a shift in the position of the HOM dip. This experiment can be extended to a full general relativistic test of quantum physics using satellites in Earth's orbit and indicates a new route toward the use of photonic technologies for investigating quantum mechanics at the interface with relativity.

9.
Opt Express ; 26(6): 7528-7536, 2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29609307

RESUMEN

Quantum ghost imaging uses photon pairs produced from parametric downconversion to enable an alternative method of image acquisition. Information from either one of the photons does not yield an image, but an image can be obtained by harnessing the correlations between them. Here we present an examination of the resolution limits of such ghost imaging systems. In both conventional imaging and quantum ghost imaging the resolution of the image is limited by the point-spread function of the optics associated with the spatially resolving detector. However, whereas in conventional imaging systems the resolution is limited only by this point spread function, in ghost imaging we show that the resolution can be further degraded by reducing the strength of the spatial correlations inherent in the downconversion process.

10.
Opt Express ; 25(10): 11265-11274, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28788808

RESUMEN

Twenty-five years ago Allen, Beijersbergen, Spreeuw, and Woerdman published their seminal paper establishing that light beams with helical phase-fronts carried an orbital angular momentum. Previously orbital angular momentum had been associated only with high-order atomic/molecular transitions and hence considered to be a rare occurrence. The realization that every photon in a laser beam could carry an orbital angular momentum that was in excess of the angular momentum associated with photon spin has led both to new understandings of optical effects and various applications. These applications range from optical manipulation, imaging and quantum optics, to optical communications. This brief review will examine some of the research in the field to date and consider what future directions might hold.

11.
Opt Express ; 25(21): 25079-25089, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-29041179

RESUMEN

Spatial structuring of the intensity, phase and polarisation of light is useful in a wide variety of modern applications, from microscopy to optical communications. This shaping is most commonly achieved using liquid crystal spatial light modulators (LC-SLMs). However, the inherent chromatic dispersion of LC-SLMs when used as diffractive elements presents a challenge to the extension of such techniques from monochromatic to broadband light. In this work we demonstrate a method of generating broadband vector beams with dynamically tunable intensity, phase and polarisation over a bandwidth of 100 nm. We use our system to generate radially and azimuthally polarised vector vortex beams carrying orbital angular momentum, and beams whose polarisation states span the majority of the Poincaré sphere. We characterise these broadband vector beams using spatially and spectrally resolved Stokes measurements, and detail the technical and fundamental limitations of our technique, including beam generation fidelity and efficiency. The broadband vector beam shaper that we demonstrate here may find use in applications such as ultrafast beam shaping and white light microscopy.

12.
Opt Express ; 25(18): 21826-21840, 2017 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-29041475

RESUMEN

The quantised nature of the electromagnetic field sets the classical limit to the sensitivity of position measurements. However, techniques based on the properties of quantum states can be exploited to accurately measure the relative displacement of a physical object beyond this classical limit. In this work, we use a simple scheme based on the split-detection of quantum correlations to measure the position of a shadow at the single-photon light level, with a precision that exceeds the shot-noise limit. This result is obtained by analysing the correlated signals of bi-photon pairs, created in parametric downconversion and detected by an electron multiplying CCD (EMCCD) camera employed as a split-detector. By comparing the measured statistics of spatially anticorrelated and uncorrelated photons we were able to observe a significant noise reduction corresponding to an improvement in position sensitivity of up to 17% (0.8dB). Our straightforward approach to sub-shot-noise position measurement is compatible with conventional shadow-sensing techniques based on the split-detection of light-fields, and yields an improvement that scales favourably with the detector's quantum efficiency.

13.
Opt Express ; 25(24): 29874-29884, 2017 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-29221023

RESUMEN

Digital micro-mirror devices (DMDs) have recently emerged as practical spatial light modulators (SLMs) for applications in photonics, primarily due to their modulation rates, which exceed by several orders of magnitude those of the already well-established nematic liquid crystal (LC)-based SLMs. This, however, comes at the expense of limited modulation depth and diffraction efficiency. Here we compare the beam-shaping fidelity of both technologies when applied to light control in complex environments, including an aberrated optical system, a highly scattering layer and a multimode optical fibre. We show that, despite their binary amplitude-only modulation, DMDs are capable of higher beam-shaping fidelity compared to LC-SLMs in all considered regimes.

14.
Opt Express ; 25(4): 2998-3005, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28241517

RESUMEN

We demonstrate a camera which can image methane gas at video rates, using only a single-pixel detector and structured illumination. The light source is an infrared laser diode operating at 1.651µm tuned to an absorption line of methane gas. The light is structured using an addressable micromirror array to pattern the laser output with a sequence of Hadamard masks. The resulting backscattered light is recorded using a single-pixel InGaAs detector which provides a measure of the correlation between the projected patterns and the gas distribution in the scene. Knowledge of this correlation and the patterns allows an image to be reconstructed of the gas in the scene. For the application of locating gas leaks the frame rate of the camera is of primary importance, which in this case is inversely proportional to the square of the linear resolution. Here we demonstrate gas imaging at ~25 fps while using 256 mask patterns (corresponding to an image resolution of 16×16). To aid the task of locating the source of the gas emission, we overlay an upsampled and smoothed image of the low-resolution gas image onto a high-resolution color image of the scene, recorded using a standard CMOS camera. We demonstrate for an illumination of only 5mW across the field-of-view imaging of a methane gas leak of ~0.2 litres/minute from a distance of ~1 metre.

15.
Phys Rev Lett ; 119(20): 203901, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-29219350

RESUMEN

Caustics are phenomena in which nature concentrates the energy of waves and may exhibit rogue-type behavior. Although they are known mostly in optics, caustics are intrinsic to all wave phenomena. As we demonstrate in this Letter, the formation of caustics and consequently rogue events in linear systems requires strong phase fluctuations. We show that nonlinear phase shifts can generate sharp caustics from even small fluctuations. Moreover, in that the wave amplitude increases dramatically in caustics, nonlinearity is usually inevitable. We perform an experiment in an optical system with Kerr nonlinearity, simulate the results based on the nonlinear Schrödinger equation, and achieve perfect agreement. As the same theoretical framework is used to describe other wave systems such as large-scale water waves, our results may also aid the understanding of ocean phenomena.

16.
Opt Express ; 24(25): 29269-29282, 2016 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-27958587

RESUMEN

The dynamic spatial control of light fields is essential to a range of applications, from microscopy to optical micro-manipulation and communications. Here we describe the use of a single digital micro-mirror device (DMD) to generate and rapidly switch vector beams with spatially controllable intensity, phase and polarisation. We demonstrate local spatial control over linear, elliptical and circular polarisation, allowing the generation of radially and azimuthally polarised beams and Poincaré beams. All of these can be switched at rates of up to 4kHz (limited only by our DMD model), a rate ∼2 orders of magnitude faster than the switching speeds of typical phase-only spatial light modulators. The polarisation state of the generated beams is characterised with spatially resolved Stokes measurements. We also describe detail of technical considerations when using a DMD, and quantify the mode capacity and efficiency of the beam generation. The high-speed switching capabilities of this method will be particularly useful for the control of light propagation through complex media such as multimode fibers, where rapid spatial modulation of intensity, phase and polarisation is required.

17.
Opt Express ; 24(10): 10476-85, 2016 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-27409871

RESUMEN

Single-pixel cameras provide a means to perform imaging at wavelengths where pixelated detector arrays are expensive or limited. The image is reconstructed from measurements of the correlation between the scene and a series of masks. Although there has been much research in the field in recent years, the fact that the signal-to-noise ratio (SNR) scales poorly with increasing resolution has been one of the main limitations prohibiting the uptake of such systems. Microscanning is a technique that provides a final higher resolution image by combining multiple images of a lower resolution. Each of these low resolution images is subject to a sub-pixel sized lateral displacement. In this work we apply a digital microscanning approach to an infrared single-pixel camera. Our approach requires no additional hardware, but is achieved simply by using a modified set of masks. Compared to the conventional Hadamard based single-pixel imaging scheme, our proposed framework improves the SNR of reconstructed images by ∼ 50 % for the same acquisition time. In addition, this strategy also provides access to a stream of low-resolution 'preview' images throughout each high-resolution acquisition.

18.
Phys Rev Lett ; 117(15): 154801, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27768337

RESUMEN

Free electrons with a helical phase front, referred to as "twisted" electrons, possess an orbital angular momentum (OAM) and, hence, a quantized magnetic dipole moment along their propagation direction. This intrinsic magnetic moment can be used to probe material properties. Twisted electrons thus have numerous potential applications in materials science. Measuring this quantity often relies on a series of projective measurements that subsequently change the OAM carried by the electrons. In this Letter, we propose a nondestructive way of measuring an electron beam's OAM through the interaction of this associated magnetic dipole with a conductive loop. Such an interaction results in the generation of induced currents within the loop, which are found to be directly proportional to the electron's OAM value. Moreover, the electron experiences no OAM variations and only minimal energy losses upon the measurement, and, hence, the nondestructive nature of the proposed technique.

19.
Opt Express ; 22(10): 11690-7, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24921291

RESUMEN

When linearly polarised light is transmitted through a spinning window, the plane of polarisation is rotated. This rotation arises through a phase change that is applied to the circularly polarised states corresponding to the spin angular momentum (SAM). Here we show an analogous effect for the orbital angular momentum (OAM), where a differential phase between the positive and negative modes (±â„“) is observed as a rotation of the transmitted image. For normal materials, this rotation is on the order of a micro radian, but by using a slow-light medium, we show a rotation of a few degrees. We also note that, within the bounds of our experimental parameters, this rotation angle does not exceed the scale of the spatial features in the beam profile.

20.
Opt Lett ; 39(10): 2944-6, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24978243

RESUMEN

It is well established that light carrying orbital angular momentum (OAM) can be used to induce a mechanical torque causing an object to spin. We consider the complementary scenario: will an observer spinning relative to the beam axis measure a change in OAM as a result of their rotational velocity? Remarkably, although a linear Doppler shift changes the linear momentum of a photon, the angular Doppler shift induces no change in the angular momentum. Further, we examine the rotational Doppler shift in frequency imparted to the incident light due to the relative motion of the beam with respect to the observer and consider what must happen to the measured wavelength if the speed of light c is to remain constant. We show specifically that the OAM of the incident beam is not affected by the rotating observer and that the measured wavelength is shifted by a factor equal and opposite to that of the frequency shift induced by the rotational Doppler effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA