RESUMEN
Phenylketonuria (PKU, OMIM 261600) is a genetic disorder caused by a deficiency of the hepatic enzyme phenylalanine hydroxylase (PAH). If left untreated, PKU leads to systemic phenylalanine (Phe) accumulation, which can result in irreversible brain damage and intellectual disabilities. In the last 60 years, early and strict dietary restriction of phenylalanine (Phe) intake proved to prevent the severe clinical phenotype of untreated PKU. While the specific mechanisms through which phenylalanine causes brain damage are still poorly understood, preclinical models have been deeply explored to characterize the neurotoxic effect of Phe on neurodevelopmental processes. At the same time, that on the aging brain still needs to be explored. In the brain of untreated PAHEnu2(-/-) mouse, we previously reported a reduction of myelin basic protein (MBP) during postnatal development up to 60 PND. Later in the diseased mouse's life, a spontaneous and persistent restoration of MBP was detected. In this present longitudinal study, ranging from 14 to 540 post-natal days (PND) of untreated PAHEnu2(-/-) mice, we further investigated: a) the long-life consistency of two Phe-related brain metabolic alterations, such as large neutral amino acids (LNAA) and biogenic amine neurotransmitters' depletion; b) the outcome of locomotor functions during the same life span; c) the integrity of myelin as assessed ex vivo by central (hippocampus) and peripheral (extensor digitorum longus-sciatic nerve) action potential conduction velocities. In contrast with the results of other studies, brain Leu, Ile, and Val concentrations were not significantly altered in the brain PAHEnu2(-/-) mouse. On the other hand, 3-O-Methyldopa (3-OMD, a biomarker of L-DOPA), serotonin, and its associated metabolites were reduced throughout most of the considered time points, with consistent reductions observed prevalently from 14 to 60 PND. Normal saltatory conduction was restored after 60 PND and remained normal at the last examination at 360 PND, resulting nonetheless in a persistent locomotor impairment throughout a lifetime. These new findings contribute to laying the foundations for the preclinical characterization of aging in PKU, confirming neurotransmitter defects as consistent metabolic traits. LNAAs have a minor role, if any, in brain damage pathogenesis. Transient myelin synthesis failure may impact brain connectivity during postnatal development but not nervous signal conduction.
Asunto(s)
Encéfalo , Modelos Animales de Enfermedad , Ratones Noqueados , Proteína Básica de Mielina , Fenilalanina , Fenilcetonurias , Animales , Fenilcetonurias/patología , Fenilcetonurias/metabolismo , Fenilcetonurias/genética , Fenilcetonurias/fisiopatología , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/crecimiento & desarrollo , Fenilalanina/metabolismo , Proteína Básica de Mielina/metabolismo , Proteína Básica de Mielina/genética , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Fenilalanina Hidroxilasa/deficiencia , Longevidad , Masculino , FemeninoRESUMEN
The midbrain raphe serotonin (5HT) neurons provide the main ascending serotonergic projection to the forebrain, including hippocampus, which has a role in the pathophysiology of depressive disorder. Serotonin 5HT1A receptor (R) activation at the soma-dendritic level of serotonergic raphe neurons and glutamatergic hippocampal pyramidal neurons leads to a decrease in neuronal firing by activation of G protein-coupled inwardly-rectifying potassium (GIRK) channels. In this raphe-hippocampal serotonin neuron system, the existence of 5HT1AR-FGFR1 heteroreceptor complexes has been proven, but the functional receptor-receptor interactions in the heterocomplexes have only been investigated in CA1 pyramidal neurons of control Sprague Dawley (SD) rats. In the current study, considering the impact of the receptor interplay in developing new antidepressant drugs, the effects of 5HT1AR-FGFR1 complex activation were investigated in hippocampal pyramidal neurons and in midbrain dorsal raphe serotonergic neurons of SD rats and of a genetic rat model of depression (the Flinders Sensitive Line (FSL) rats of SD origin) using an electrophysiological approach. The results showed that in the raphe-hippocampal 5HT system of SD rats, 5HT1AR-FGFR1 heteroreceptor activation by specific agonists reduced the ability of the 5HT1AR protomer to open the GIRK channels through the allosteric inhibitory interplay produced by the activation of the FGFR1 protomer, leading to increased neuronal firing. On the contrary, in FSL rats, FGFR1 agonist-induced inhibitory allosteric action at the 5HT1AR protomer was not able to induce this effect on GIRK channels, except in CA2 neurons where we demonstrated that the functional receptor-receptor interaction is needed for producing the effect on GIRK. In keeping with this evidence, hippocampal plasticity, evaluated as long-term potentiation induction ability in the CA1 field, was impaired by 5HT1AR activation both in SD and in FSL rats, which did not develop after combined 5HT1AR-FGFR1 heterocomplex activation in SD rats. It is therefore proposed that in the genetic FSL model of depression, there is a significant reduction in the allosteric inhibition exerted by the FGFR1 protomer on the 5HT1A protomer-mediated opening of the GIRK channels in the 5HT1AR-FGFR1 heterocomplex located in the raphe-hippocampal serotonin system. This may result in an enhanced inhibition of the dorsal raphe 5HT nerve cell and glutamatergic hippocampal CA1 pyramidal nerve cell firing, which we propose may have a role in depression.
Asunto(s)
Núcleo Dorsal del Rafe , Serotonina , Animales , Ratas , Depresión/genética , Hipocampo , Ratas Sprague-Dawley , Neuronas Serotoninérgicas , Receptores de Serotonina/metabolismoRESUMEN
Physical exercise is a well-proven neurogenic stimulus, promoting neuronal progenitor proliferation and affecting newborn cell survival. Besides, it has beneficial effects on brain health and cognition. Previously, we found that three days of physical activity in a very precocious period of adult-generated granule cell life is able to antedate the appearance of the first GABAergic synaptic contacts and increase T-type Ca2+ channel expression. Considering the role of GABA and Ca2+ in fostering neuronal maturation, in this study, we used short-term, voluntary exercise on a running wheel to investigate if it is able to induce long-term morphological and synaptic changes in newborn neurons. Using adult male rats, we found that: (i) three days of voluntary physical exercise can definitively influence the morpho-functional maturation process of newborn granule neurons when applied very early during their development; (ii) a significant percentage of new neurons show more mature morphological characteristics far from the end of exercise protocol; (iii) the long-term morphological effects result in enhanced synaptic plasticity. Present findings demonstrate that the morpho-functional changes induced by exercise on very immature adult-generated neurons are permanent, affecting the neuron maturation and integration in hippocampal circuitry. Our data contribute to underpinning the beneficial potential of physical activity on brain health, also performed for short times.
Asunto(s)
Giro Dentado , Condicionamiento Físico Animal , Animales , Giro Dentado/metabolismo , Hipocampo/metabolismo , Masculino , Neurogénesis/fisiología , Neuronas/metabolismo , Condicionamiento Físico Animal/fisiología , RatasRESUMEN
Mitochondrial dysfunction is considered one of the hallmarks of ischemia/reperfusion injury. Mitochondria are plastic organelles that undergo continuous biogenesis, fusion, and fission. They can be transferred between cells through tunneling nanotubes (TNTs), dynamic structures that allow the exchange of proteins, soluble molecules, and organelles. Maintaining mitochondrial dynamics is crucial to cell function and survival. The present study aimed to assess the effects of melatonin on mitochondrial dynamics, TNT formation, and mitochondria transfer in HT22 cells exposed to oxygen/glucose deprivation followed by reoxygenation (OGD/R). The results showed that melatonin treatment during the reoxygenation phase reduced mitochondrial reactive oxygen species (ROS) production, improved cell viability, and increased the expression of PGC1α and SIRT3. Melatonin also preserved the expression of the membrane translocase proteins TOM20 and TIM23, and of the matrix protein HSP60, which are involved in mitochondrial biogenesis. Moreover, it promoted mitochondrial fusion and enhanced the expression of MFN2 and OPA1. Remarkably, melatonin also fostered mitochondrial transfer between injured HT22 cells through TNT connections. These results provide new insights into the effect of melatonin on mitochondrial network reshaping and cell survival. Fostering TNTs formation represents a novel mechanism mediating the protective effect of melatonin in ischemia/reperfusion injury.
Asunto(s)
Isquemia Encefálica/patología , Estructuras de la Membrana Celular/efectos de los fármacos , Melatonina/farmacología , Mitocondrias/efectos de los fármacos , Neuronas/ultraestructura , Animales , Línea Celular , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/ultraestructura , Ratones , Mitocondrias/metabolismo , Nanotubos , Neuronas/efectos de los fármacos , Neuronas/patología , Daño por Reperfusión/patologíaRESUMEN
The lack of economic funds commonly represents a limiting factor in scientific research and prevents scientists from developing brilliant ideas. Indeed, a new project may involve using appropriate scientific instruments and concurrently dealing with the costs before pursuing new research fields. The innovative concept of investigating the effects of electric fields, as a simulation of marine electrical pollution, on benthic organisms such as foraminifera (marine protozoa) has been recently explored by our research group. This pioneering research has resulted in the development of a cost-effective instrument capable of generating customized electric stimulation patterns with accuracy and reliability. Here, we describe the construction of a low-intensity electrical stimulator based on an Arduino programmable board and a few electronic components. The instrument results very stable and precise regarding the stimulation times and the regulation of the current intensity applied to the biological preparation. Moreover, the setup can stimulate the preparation in constant or pulsed direct current. This homemade stimulation apparatus can be improved or modified according to the researchers' needs, as possibilities and fields of application can be innumerable.
RESUMEN
Dysfunctional autophagy is linked to neuronal damage in ischemia/reperfusion injury. The Ras-related protein 7 (Rab7), a member of the Rab family of small GTPases, appears crucial for the progression of the autophagic flux, and its activity is strictly interconnected with the histone deacetylase Silent information regulator 1 (Sirt1) and transcription factor Forkhead box class O1 (FoxO1). The present study assessed the neuroprotective role of melatonin in the modulation of the Sirt1/FoxO1/Rab7 axis in HT22 cells and organotypic hippocampal cultures exposed to oxygen-glucose deprivation followed by reoxygenation (OGD/R). The results showed that melatonin re-established physiological levels of autophagy and reduced propidium iodide-positive cells, speeding up autophagosome (AP) maturation and increasing lysosomal activity. Our study revealed that melatonin modulates autophagic pathways, increasing the expression of both Rab7 and FoxO1 and restoring the Sirt1 expression affected by OGD/R. In addition, the Sirt1 inhibitor EX-527 significantly reduced Rab7, Sirt1, and FoxO1 expression, as well as autolysosomes formation, and blocked the neuroprotective effect of melatonin. Overall, our findings provide, for the first time, new insights into the neuroprotective role of melatonin against ischemic injury through the activation of the Sirt1/FoxO1/Rab7 axis.