Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 212(1): 43-56, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37955416

RESUMEN

Serum Ab concentrations, selection for higher affinity BCRs, and generation of higher Ab affinities are important elements of immune response optimization and functions of germinal center (GC) reactions. B cell proliferation requires nutrients to support the anabolism inherent in clonal expansion. Glucose usage by mouse GC B cells has been reported to contribute little to their energy needs, with questions raised as to whether glucose uptake or glycolysis increases in GC B cells compared with their naive precursors. Indeed, metabolism can be highly flexible, such that supply shortage along one pathway may be compensated by increased flux on others. We now show that reduction of the glucose transporter GLUT1 in mice after establishment of a preimmune B cell repertoire, even after initiation of the GC B cell gene expression program, decreased initial GC B cell population numbers, affinity maturation, and plasma cell outputs. Glucose oxidation was heightened in GC B cells, but this hexose flowed more into the pentose phosphate pathway, whose activity was important in controlling reactive oxygen species (ROS) and Ab-secreting cell production. In modeling how glucose usage by B cells promotes the Ab response, the control of ROS appeared insufficient. Surprisingly, the combination of galactose, which mitigated ROS, with provision of mannose, an efficient precursor to glycosylation, supported robust production of and normal Ab secretion by Ab-secreting cells under glucose-free conditions. Collectively, the findings indicate that GCs depend on normal glucose influx, especially in plasma cell production, but reveal an unexpected metabolic flexibility in hexose requirements.


Asunto(s)
Centro Germinal , Glucosa , Ratones , Animales , Glucosa/metabolismo , Especies Reactivas de Oxígeno , Anticuerpos , Diferenciación Celular
2.
bioRxiv ; 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37745429

RESUMEN

Antibody secretion into sera, selection for higher affinity BCR, and the generation of higher Ab affinities are important elements of immune response optimization, and a core function of germinal center reactions. B cell proliferation requires nutrients to support the anabolism inherent in clonal expansion. Glucose usage by GC B cells has been reported to contribute little to their energy needs, with questions raised as to whether or not glucose uptake or glycolysis increases in GC B cells compared to their naïve precursors. Indeed, metabolism can be highly flexible, such that supply shortage along one pathway may be compensated by increased flux on others. We now show that elimination of the glucose transporter GLUT1 after establishment of a pre-immune B cell repertoire, even after initiation of the GC B cell gene expression program, decreased initial GC B cell population numbers, affinity maturation, and PC outputs. Glucose oxidation was heightened in GC B cells, but this hexose flowed more into the pentose phosphate pathway (PPP), whose activity was important in controlling reactive oxygen (ROS) and ASC production. In modeling how glucose usage by B cells promotes the Ab response, the control of ROS appeared insufficient. Surprisingly, the combination of galactose, which mitigated ROS, with provision of mannose - an efficient precursor to glycosylation - supported robust production of and normal Ab secretion by ASC under glucose-free conditions. Collectively, the findings indicate that GC depend on normal glucose influx, especially in PC production, but reveal an unexpected metabolic flexibility in hexose requirements. KEY POINTS: Glucose influx is critical for GC homeostasis, affinity maturation and the generation of Ab-secreting cells.Plasma cell development uses the Pentose Phosphate Pathway, and hexose sugars maintain redox homeostasis.PCs can develop and achieve robust Ab secretion in the absence of glucose using a combination of hexose alternatives.

3.
J Clin Invest ; 131(4)2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33320840

RESUMEN

Rapidly proliferating tumor and immune cells need metabolic programs that support energy and biomass production. The amino acid glutamine is consumed by effector T cells and glutamine-addicted triple-negative breast cancer (TNBC) cells, suggesting that a metabolic competition for glutamine may exist within the tumor microenvironment, potentially serving as a therapeutic intervention strategy. Here, we report that there is an inverse correlation between glutamine metabolic genes and markers of T cell-mediated cytotoxicity in human basal-like breast cancer (BLBC) patient data sets, with increased glutamine metabolism and decreased T cell cytotoxicity associated with poor survival. We found that tumor cell-specific loss of glutaminase (GLS), a key enzyme for glutamine metabolism, improved antitumor T cell activation in both a spontaneous mouse TNBC model and orthotopic grafts. The glutamine transporter inhibitor V-9302 selectively blocked glutamine uptake by TNBC cells but not CD8+ T cells, driving synthesis of glutathione, a major cellular antioxidant, to improve CD8+ T cell effector function. We propose a "glutamine steal" scenario, in which cancer cells deprive tumor-infiltrating lymphocytes of needed glutamine, thus impairing antitumor immune responses. Therefore, tumor-selective targeting of glutamine metabolism may be a promising therapeutic strategy in TNBC.


Asunto(s)
Antineoplásicos/farmacología , Linfocitos T CD8-positivos/inmunología , Proteínas Portadoras/antagonistas & inhibidores , Glutamina/inmunología , Inmunidad Celular , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias de la Mama Triple Negativas/inmunología , Animales , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Proteínas Portadoras/inmunología , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Femenino , Glutamina/metabolismo , Xenoinjertos , Humanos , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Ratones , Ratones Transgénicos , Trasplante de Neoplasias , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA