Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Hum Mol Genet ; 31(4): 561-575, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-34508588

RESUMEN

Germline-activating mutations in HRAS cause Costello syndrome (CS), a cancer prone multisystem disorder characterized by reduced postnatal growth. In CS, poor weight gain and growth are not caused by low caloric intake. Here, we show that constitutive plasma membrane translocation and activation of the GLUT4 glucose transporter, via reactive oxygen species-dependent AMP-activated protein kinase α and p38 hyperactivation, occurs in primary fibroblasts of CS patients, resulting in accelerated glycolysis and increased fatty acid synthesis and storage as lipid droplets. An accelerated autophagic flux was also identified as contributing to the increased energetic expenditure in CS. Concomitant inhibition of p38 and PI3K signaling by wortmannin was able to rescue both the dysregulated glucose intake and accelerated autophagic flux. Our findings provide a mechanistic link between upregulated HRAS function, defective growth and increased resting energetic expenditure in CS, and document that targeting p38 and PI3K signaling is able to revert this metabolic dysfunction.


Asunto(s)
Síndrome de Costello , Síndrome de Costello/genética , Síndrome de Costello/metabolismo , Fibroblastos/metabolismo , Humanos , Oxidación-Reducción , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal/genética
2.
Mol Ther ; 23(5): 885-895, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25669433

RESUMEN

Although in the last decades the molecular underpinnings of the cell cycle have been unraveled, the acquired knowledge has been rarely translated into practical applications. Here, we investigate the feasibility and safety of triggering proliferation in vivo by temporary suppression of the cyclin-dependent kinase inhibitor, p21. Adeno-associated virus (AAV)-mediated, acute knockdown of p21 in intact skeletal muscles elicited proliferation of multiple, otherwise quiescent cell types, notably including satellite cells. Compared with controls, p21-suppressed muscles exhibited a striking two- to threefold expansion in cellularity and increased fiber numbers by 10 days post-transduction, with no detectable inflammation. These changes partially persisted for at least 60 days, indicating that the muscles had undergone lasting modifications. Furthermore, morphological hyperplasia was accompanied by 20% increases in maximum strength and resistance to fatigue. To assess the safety of transiently suppressing p21, cells subjected to p21 knockdown in vitro were analyzed for γ-H2AX accumulation, DNA fragmentation, cytogenetic abnormalities, ploidy, and mutations. Moreover, the differentiation competence of p21-suppressed myoblasts was investigated. These assays confirmed that transient suppression of p21 causes no genetic damage and does not impair differentiation. Our results establish the basis for further exploring the manipulation of the cell cycle as a strategy in regenerative medicine.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Animales , Ciclo Celular/genética , Diferenciación Celular/genética , Proliferación Celular , Aberraciones Cromosómicas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Dependovirus/clasificación , Dependovirus/genética , Fibroblastos , Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Reporteros , Vectores Genéticos/genética , Humanos , Inmunohistoquímica , Ratones , Contracción Muscular/genética , Mutación , Interferencia de ARN , ARN Interferente Pequeño/genética , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Serogrupo , Transducción Genética
3.
J Cell Biol ; 176(6): 807-18, 2007 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-17353358

RESUMEN

In adult vertebrates, most cells are not in the cell cycle at any one time. Physiological nonproliferation states encompass reversible quiescence and permanent postmitotic conditions such as terminal differentiation and replicative senescence. Although these states appear to be attained and maintained quite differently, they might share a core proliferation-restricting mechanism. Unexpectedly, we found that all sorts of nonproliferating cells can be mitotically reactivated by the sole suppression of histotype-specific cyclin-dependent kinase (cdk) inhibitors (CKIs) in the absence of exogenous mitogens. RNA interference-mediated suppression of appropriate CKIs efficiently triggered DNA synthesis and mitosis in established and primary terminally differentiated skeletal muscle cells (myotubes), quiescent human fibroblasts, and senescent human embryo kidney cells. In serum-starved fibroblasts and myotubes alike, cell cycle reactivation was critically mediated by the derepression of cyclin D-cdk4/6 complexes. Thus, both temporary and permanent growth arrest must be actively maintained by the constant expression of CKIs, whereas the cell cycle-driving cyclins are always present or can be readily elicited. In principle, our findings could find wide application in biotechnology and tissue repair whenever cell proliferation is limiting.


Asunto(s)
Ciclo Celular/fisiología , Proliferación Celular , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/antagonistas & inhibidores , Animales , Diferenciación Celular , Células Cultivadas , Senescencia Celular/fisiología , Ciclina D3 , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Ciclinas/metabolismo , Replicación del ADN/fisiología , Humanos , Ratones , Fibras Musculares Esqueléticas/citología , Interferencia de ARN
4.
Cells ; 10(10)2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34685732

RESUMEN

Terminal differentiation is an ill-defined, insufficiently characterized, nonproliferation state. Although it has been classically deemed irreversible, it is now clear that at least several terminally differentiated (TD) cell types can be brought back into the cell cycle. We are striving to uncover the molecular bases of terminal differentiation, whose fundamental understanding is a goal in itself. In addition, the field has sought to acquire the ability to make TD cells proliferate. Attaining this end would probe the very molecular mechanisms we are trying to understand. Equally important, it would be invaluable in regenerative medicine, for tissues depending on TD cells and devoid of significant self-repair capabilities. The skeletal muscle has long been used as a model system to investigate the molecular foundations of terminal differentiation. Here, we summarize more than 50 years of studies in this field.


Asunto(s)
Ciclo Celular , Diferenciación Celular , Fibras Musculares Esqueléticas/citología , Animales , Apoptosis/genética , Ciclo Celular/genética , Diferenciación Celular/genética , Proliferación Celular/genética , Regulación de la Expresión Génica , Humanos , Fibras Musculares Esqueléticas/metabolismo
5.
J Cell Biol ; 167(3): 417-23, 2004 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-15520231

RESUMEN

In skeletal muscle differentiation, the retinoblastoma protein (pRb) is absolutely necessary to establish definitive mitotic arrest. It is widely assumed that pRb is equally essential to sustain the postmitotic state, but this contention has never been tested. Here, we show that terminal proliferation arrest is maintained in skeletal muscle cells by a pRb-independent mechanism. Acute Rb excision from conditional knockout myotubes caused reexpression of E2F transcriptional activity, cyclin-E and -A kinase activities, PCNA, DNA ligase I, RPA, and MCM2, but did not induce DNA synthesis, showing that pRb is not indispensable to preserve the postmitotic state of these cells. Muscle-specific gene expression was significantly down-regulated, showing that pRb is constantly required for optimal implementation of the muscle differentiation program. Rb-deleted myotubes were efficiently reactivated by forced expression of cyclin D1 and Cdk4, indicating a functionally significant target other than pRb for these molecules. Finally, Rb removal induced no DNA synthesis even in pocket-protein null cells. Thus, the postmitotic state of myotubes is maintained by at least two mechanisms, one of which is pocket-protein independent.


Asunto(s)
Diferenciación Celular , Mitosis , Células Musculares/citología , Músculo Esquelético/citología , Proteína de Retinoblastoma/fisiología , Animales , Ciclo Celular , Células Cultivadas , Ciclina D1/genética , Ciclina D1/fisiología , Quinasa 4 Dependiente de la Ciclina , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/fisiología , Regulación hacia Abajo , Expresión Génica , Ratones , Ratones Noqueados , Células Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/fisiología
6.
J Clin Invest ; 115(11): 3015-25, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16224537

RESUMEN

The molecular anatomy of cancer cells is being explored through unbiased approaches aimed at the identification of cancer-specific transcriptional signatures. An alternative biased approach is exploitation of molecular tools capable of inducing cellular transformation. Transcriptional signatures thus identified can be readily validated in real cancers and more easily reverse-engineered into signaling pathways, given preexisting molecular knowledge. We exploited the ability of the adenovirus early region 1 A protein (E1A) oncogene to force the reentry into the cell cycle of terminally differentiated cells in order to identify and characterize genes whose expression is upregulated in this process. A subset of these genes was activated through a retinoblastoma protein/E2 viral promoter required factor-independent (pRb/E2F-independent) mechanism and was overexpressed in a fraction of human cancers. Furthermore, this overexpression correlated with tumor progression in colon cancer, and 2 of these genes predicted unfavorable prognosis in breast cancer. A proof of principle biological validation was performed on one of the genes of the signature, skeletal muscle cell reentry-induced (SKIN) gene, a previously undescribed gene. SKIN was found overexpressed in some primary tumors and tumor cell lines and was amplified in a fraction of colon adenocarcinomas. Furthermore, knockdown of SKIN caused selective growth suppression in overexpressing tumor cell lines but not in tumor lines expressing physiological levels of the transcript. Thus, SKIN is a candidate oncogene in human cancer.


Asunto(s)
Expresión Génica/fisiología , Neoplasias/genética , ARN Mensajero/metabolismo , Proteínas E1A de Adenovirus/fisiología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Ciclo Celular/fisiología , Línea Celular , Línea Celular Tumoral , Femenino , Perfilación de la Expresión Génica , Células HT29 , Humanos , Ratones , Fibras Musculares Esqueléticas/metabolismo , Células 3T3 NIH , Neoplasias/metabolismo
7.
Cell Death Differ ; 24(5): 774-784, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28186504

RESUMEN

Terminally differentiated cells are defined by their inability to proliferate. When forced to re-enter the cell cycle, they generally cannot undergo long-term replication. Our previous work with myotubes has shown that these cells fail to proliferate because of their intrinsic inability to complete DNA replication. Moreover, we have reported pronounced modifications of deoxynucleotide metabolism during myogenesis. Here we investigate the causes of incomplete DNA duplication in cell cycle-reactivated myotubes (rMt). We find that rMt possess extremely low levels of thymidine triphosphate (dTTP), resulting in very slow replication fork rates. Exogenous administration of thymidine or forced expression of thymidine kinase increases deoxynucleotide availability, allowing extended and faster DNA replication. Inadequate dTTP levels are caused by selective, differentiation-dependent, cell cycle-resistant suppression of genes encoding critical synthetic enzymes, chief among which is thymidine kinase 1. We conclude that lack of dTTP is at least partially responsible for the inability of myotubes to proliferate and speculate that it constitutes an emergency barrier against unwarranted DNA replication in terminally differentiated cells.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Células Satélite del Músculo Esquelético/efectos de los fármacos , Timidina Quinasa/genética , Timidina/farmacología , Nucleótidos de Timina/deficiencia , Animales , Ciclo Celular/genética , Diferenciación Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Nucleótidos de Desoxicitosina/metabolismo , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Ratones , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Cultivo Primario de Células , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Timidina Quinasa/metabolismo , Timidina Monofosfato/metabolismo
8.
Cancer Cell ; 22(2): 250-62, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22897854

RESUMEN

Hepatocyte growth factor (HGF) and vascular endothelial cell growth factor (VEGF) regulate normal development and homeostasis and drive disease progression in many forms of cancer. Both proteins signal by binding to receptor tyrosine kinases and heparan sulfate (HS) proteoglycans on target cell surfaces. Basic residues comprising the primary HS binding sites on HGF and VEGF provide similar surface charge distributions without underlying structural similarity. Combining three acidic amino acid substitutions in these sites in the HGF isoform NK1 or the VEGF isoform VEGF165 transformed each into potent, selective competitive antagonists of their respective normal and oncogenic signaling pathways. Our findings illustrate the importance of HS in growth factor driven cancer progression and reveal an efficient strategy for therapeutic antagonist development.


Asunto(s)
Marcación de Gen , Heparitina Sulfato/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Antígenos CD34/metabolismo , Proliferación Celular/efectos de los fármacos , Análisis por Conglomerados , Perros , Activación Enzimática/efectos de los fármacos , Factor de Crecimiento de Hepatocito/antagonistas & inhibidores , Factor de Crecimiento de Hepatocito/química , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Metástasis de la Neoplasia , Neoplasias/irrigación sanguínea , Neoplasias/patología , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Unión Proteica/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/farmacología
9.
PLoS One ; 5(7): e11559, 2010 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-20644635

RESUMEN

BACKGROUND: Terminally differentiated (TD) cells permanently exit the mitotic cycle while acquiring specialized characteristics. Although TD cells can be forced to reenter the cell cycle by different means, they cannot be made to stably proliferate, as attempts to induce their replication constantly result in cell death or indefinite growth arrest. There is currently no biological explanation for this failure. PRINCIPAL FINDINGS: Here we show that TD mouse myotubes, reactivated by depletion of the p21 and p27 cell cycle inhibitors, are unable to complete DNA replication and sustain heavy DNA damage, which triggers apoptosis or results in mitotic catastrophe. In striking contrast, quiescent, non-TD fibroblasts and myoblasts, reactivated in the same way, fully replicate their DNA, do not suffer DNA damage, and proliferate even in the absence of growth factors. Similar results are obtained when myotubes and fibroblasts are reactivated by forced expression of E1A or cyclin D1 and cdk4. CONCLUSIONS: We conclude that the inability of myotubes to complete DNA replication must be ascribed to peculiar features inherent in their TD state, rather than to the reactivation method. On reviewing the literature concerning reactivation of other TD cell types, we propose that similar mechanisms underlie the general inability of all kinds of TD cells to proliferate in response to otherwise mitogenic stimuli. These results define an unexpected basis for the well known incompetence of mammalian postmitotic cells to proliferate. Furthermore, this trait might contribute to explain the inability of these cells to play a role in tissue repair, unlike their counterparts in extensively regenerating species.


Asunto(s)
Diferenciación Celular/fisiología , Replicación del ADN/fisiología , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiología , Diferenciación Celular/genética , Línea Celular , Células Cultivadas , Ensayo Cometa , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Replicación del ADN/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Ratones , Mitosis/genética , Mitosis/fisiología , Interferencia de ARN
10.
Cell Cycle ; 6(12): 1415-8, 2007 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-17581276

RESUMEN

We have recently shown that all kinds of non-proliferating cells, including quiescent, senescent, and terminally differentiated ones, can be mitotically reactivated by the sole removal of cell type-specific cyclin-dependent kinase inhibitors. Reactivation takes place irrespective of added growth factors, allowing otherwise quiescent or senescent cells to proliferate. These unexpected findings warrant a reappraisal of some key aspects of the cell cycle. Inhibitors do not only modulate kinase activity, but contribute to the decision to enter the cell cycle as much as cyclins themselves. Non-proliferating cells, even those destined never to reenter the cell cycle, continue to express functionally significant levels of pre-assembled cyclin-cdk complexes, making cell cycle-arrest a state that must be constantly maintained by active expression of cyclin-dependent kinase inhibitors (CKIs). In addition, we suggest that the novel findings can be exploited in human therapy to accelerate, promote, or induce cell proliferation, both in vitro and in vivo. They should prove advantageous in cell biotechnology, cell replacement therapy, and tissue repair, wherever cell proliferation constitutes a limiting factor.


Asunto(s)
Ciclo Celular/fisiología , Proliferación Celular , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Modelos Biológicos , Diferenciación Celular/fisiología , Músculo Esquelético/citología , Medicina Regenerativa/métodos
11.
Proc Natl Acad Sci U S A ; 104(43): 17010-5, 2007 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-17940040

RESUMEN

The differentiation of skeletal myoblasts is characterized by permanent withdrawal from the cell cycle and fusion into multinucleated myotubes. Muscle cell survival is critically dependent on the ability of cells to respond to oxidative stress. Base excision repair (BER) is the main repair mechanism of oxidative DNA damage. In this study, we compared the levels of endogenous oxidative DNA damage and BER capacity of mouse proliferating myoblasts and their differentiated counterpart, the myotubes. Changes in the expression of oxidative stress marker genes during differentiation, together with an increase in 8-hydroxyguanine DNA levels in terminally differentiated cells, suggested that reactive oxygen species are produced during this process. The repair of 2-deoxyribonolactone, which is exclusively processed by long-patch BER, was impaired in cell extracts from myotubes. The repair of a natural abasic site (a preferred substrate for short-patch BER) also was delayed. The defect in BER of terminally differentiated muscle cells was ascribed to the nearly complete lack of DNA ligase I and to the strong down-regulation of XRCC1 with subsequent destabilization of DNA ligase IIIalpha. The attenuation of BER in myotubes was associated with significant accumulation of DNA damage as detected by increased DNA single-strand breaks and phosphorylated H2AX nuclear foci upon exposure to hydrogen peroxide. We propose that in skeletal muscle exacerbated by free radical injury, the accumulation of DNA repair intermediates, due to attenuated BER, might contribute to myofiber degeneration as seen in sarcopenia and many muscle disorders.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Células Musculares/citología , Células Musculares/efectos de los fármacos , Oxígeno/toxicidad , Animales , Extractos Celulares , Proliferación Celular/efectos de los fármacos , Roturas del ADN de Cadena Simple , Homeostasis/efectos de los fármacos , Cinética , Ratones , Células Musculares/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Factores de Tiempo
12.
Cell Cycle ; 3(12): 1572-8, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15611651

RESUMEN

Cyclin E is a key cell cycle regulator, whose accumulation is believed to be positively modulated chiefly at the transcriptional level. We show that forced expression of E2F family members specifically stabilizes cyclin E protein by reducing its conjugation with ubiquitin, leading to increased steady-state levels. The stabilized protein shows enhanced association with cdk2 and higher kinase activity, indicating that cyclin E stabilization bears functional consequences. Although the activity of E2F on the cyclin E protein does not entail increased cyclin E gene transcription, it does require the E2F transactivation capacity, as demonstrated by E2F and DP-1 mutant analysis. However, such activity does not require E2F binding to pRb. Furthermore, E2F stabilizes cyclin E even in nonproliferating cells. Our results bear significance for the understanding of tumor progression, in light of the well-known autoregulatory loop between E2F and cyclin E and the disregulation of E2F that is one consequence of the almost universal impairment of the pRb pathway in cancer. Constitutive pRb inactivation leads to enhanced E2F activity through loss of binding. We propose that such increased E2F activity stabilizes cyclin E and contributes to establish the high and persistent levels of the protein commonly found in human neoplasias.


Asunto(s)
Ciclina E/metabolismo , Factores de Transcripción E2F/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Núcleo Celular , Células Cultivadas , Ciclina E/genética , Fibroblastos/citología , Expresión Génica , Ratones , Mutación/genética , Mioblastos , Células 3T3 NIH , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Activación Transcripcional/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA