Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurophysiol ; 122(4): 1502-1517, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31389752

RESUMEN

The common marmoset (Callithrix jacchus) is a promising new model for study of neurophysiological basis of behavior in primates. Like other primates, it relies on saccadic eye movements to monitor and explore its environment. Previous reports have demonstrated some success in training marmosets to produce goal-directed actions in the laboratory. However, the number of trials per session has been relatively small, thus limiting the utility of marmosets as a model for behavioral and neurophysiological studies. In this article, we report the results of a series of new behavioral training and neurophysiological protocols aimed at increasing the number of trials per session while recording from the cerebellum. To improve the training efficacy, we designed a precisely calibrated food regulation regime that motivates the subjects to perform saccade tasks, resulting in ~1,000 reward-driven trials on a daily basis. We then developed a multichannel recording system that uses imaging to target a desired region of the cerebellum, allowing for simultaneous isolation of multiple Purkinje cells in the vermis. In this report, we describe 1) the design and surgical implantation of a computer tomography (CT)-guided, subject-specific head post, 2) the design of a CT- and MRI-guided alignment tool for trajectory guidance of electrodes mounted on an absolute encoder microdrive, 3) development of a protocol for behavioral training of subjects, and 4) simultaneous recordings from pairs of Purkinje cells during a saccade task.NEW & NOTEWORTHY Marmosets present the opportunity to investigate genetically based neurological disease in primates, in particular, diseases that affect social behaviors, vocal communication, and eye movements. All of these behaviors depend on the integrity of the cerebellum. We present training methods that better motivate the subjects, allowing for improved performance, and we also present electrophysiological techniques that precisely target the subject's cerebellum, allowing for simultaneous isolation of multiple Purkinje cells.


Asunto(s)
Condicionamiento Psicológico , Electroencefalografía/métodos , Células de Purkinje/fisiología , Animales , Callithrix , Electroencefalografía/instrumentación , Femenino , Masculino , Esquema de Refuerzo , Movimientos Sacádicos
2.
Brain Imaging Behav ; 17(6): 674-688, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37676408

RESUMEN

Children with attention-deficit/hyperactivity disorder (ADHD) demonstrate reduced response inhibition, increased response time variability, and atypical frontal lobe white matter microstructure with emerging evidence of sex differences. This study aims to examine whether frontal lobe white matter microstructure is differentially impacted in ADHD by sex and whether this relates to Go/No-Go (GNG) task performance. Diffusion tensor imaging (DTI) from 187 children (8-12 years), including ADHD (n = 94) and typically developing controls (TD; n = 93). Participants completed three GNG tasks with varying cognitive demands and incentives (standard, cognitive, and motivational). Fractional anisotropy (FA) was examined as an index of white matter microstructure within bilateral frontal lobe regions of interest. Children with ADHD showed reduced FA in primary motor (M1) and supplementary motor area (SMA) regardless of sex. Sex-based dissociation for the effect of diagnosis was observed in medial orbitofrontal cortex (mOFC), with higher FA in girls with ADHD and lower FA in boys with ADHD. Both diagnosis and sex contributed to performance on measures of response inhibition and reaction time (RT) variability, with all children with ADHD demonstrating poorer performance on all GNG tasks, but boys with ADHD demonstrating more impulsivity on standard and motivational behavioral paradigms compared to girls with ADHD. Analyses revealed associations between reduced FA in M1, SMA, and mOFC and increased response inhibition and RT variability with some sex-based differences. These findings provide novel insights regarding the brain basis of ADHD and associated impairments in response inhibition and RT variability, and contribute to our understanding of sexual dimorphic behavioral outcomes.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Sustancia Blanca , Niño , Humanos , Masculino , Femenino , Sustancia Blanca/diagnóstico por imagen , Imagen de Difusión Tensora , Motivación , Trastorno por Déficit de Atención con Hiperactividad/complicaciones , Caracteres Sexuales , Imagen por Resonancia Magnética , Lóbulo Frontal/diagnóstico por imagen , Cognición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA