Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Syst Biol ; 19(8): e11686, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37325891

RESUMEN

The ongoing degradation of natural systems and other environmental changes has put our society at a crossroad with respect to our future relationship with our planet. While the concept of One Health describes how human health is inextricably linked with environmental health, many of these complex interdependencies are still not well-understood. Here, we describe how the advent of real-time genomic analyses can benefit One Health and how it can enable timely, in-depth ecosystem health assessments. We introduce nanopore sequencing as the only disruptive technology that currently allows for real-time genomic analyses and that is already being used worldwide to improve the accessibility and versatility of genomic sequencing. We showcase real-time genomic studies on zoonotic disease, food security, environmental microbiome, emerging pathogens, and their antimicrobial resistances, and on environmental health itself - from genomic resource creation for wildlife conservation to the monitoring of biodiversity, invasive species, and wildlife trafficking. We stress why equitable access to real-time genomics in the context of One Health will be paramount and discuss related practical, legal, and ethical limitations.


Asunto(s)
Ecosistema , Salud Única , Humanos , Genómica , Biodiversidad , Genoma
2.
BMC Biol ; 18(1): 199, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33349252

RESUMEN

BACKGROUND: Repetitive DNA sequences, including transposable elements (TEs) and tandemly repeated satellite DNA (satDNAs), collectively called the "repeatome", are found in high proportion in organisms across the Tree of Life. Grasshoppers have large genomes, averaging 9 Gb, that contain a high proportion of repetitive DNA, which has hampered progress in assembling reference genomes. Here we combined linked-read genomics with transcriptomics to assemble, characterize, and compare the structure of repetitive DNA sequences in four chromosomal races of the morabine grasshopper Vandiemenella viatica species complex and determine their contribution to genome evolution. RESULTS: We obtained linked-read genome assemblies of 2.73-3.27 Gb from estimated genome sizes of 4.26-5.07 Gb DNA per haploid genome of the four chromosomal races of V. viatica. These constitute the third largest insect genomes assembled so far. Combining complementary annotation tools and manual curation, we found a large diversity of TEs and satDNAs, constituting 66 to 75% per genome assembly. A comparison of sequence divergence within the TE classes revealed massive accumulation of recent TEs in all four races (314-463 Mb per assembly), indicating that their large genome sizes are likely due to similar rates of TE accumulation. Transcriptome sequencing showed more biased TE expression in reproductive tissues than somatic tissues, implying permissive transcription in gametogenesis. Out of 129 satDNA families, 102 satDNA families were shared among the four chromosomal races, which likely represent a diversity of satDNA families in the ancestor of the V. viatica chromosomal races. Notably, 50 of these shared satDNA families underwent differential proliferation since the recent diversification of the V. viatica species complex. CONCLUSION: This in-depth annotation of the repeatome in morabine grasshoppers provided new insights into the genome evolution of Orthoptera. Our TEs analysis revealed a massive recent accumulation of TEs equivalent to the size of entire Drosophila genomes, which likely explains the large genome sizes in grasshoppers. Despite an overall high similarity of the TE and satDNA diversity between races, the patterns of TE expression and satDNA proliferation suggest rapid evolution of grasshopper genomes on recent timescales.


Asunto(s)
Elementos Transponibles de ADN/genética , ADN Satélite/genética , Genoma de los Insectos , Animales , Femenino , Saltamontes/genética , Masculino
3.
iScience ; 27(1): 108665, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38226169

RESUMEN

The Montseny brook newt (Calotriton arnoldi), considered the most endangered amphibian in Europe, is a relict salamandrid species endemic to a small massif located in northeastern Spain. Although conservation efforts should always be guided by genomic studies, those are yet scarce among urodeles, hampered by the extreme sizes of their genomes. Here, we present the third available genome assembly for the order Caudata, and the first genomic study of the species and its sister taxon, the Pyrenean brook newt (Calotriton asper), combining whole-genome and ddRADseq data. Our results reveal significant demographic oscillations which accurately mirrored Europe's climatic history. Although severe bottlenecks have led to depauperate genomic diversity and long runs of homozygosity along a gigantic genome, inbreeding might have been avoided by assortative mating strategies. Other life history traits, however, seem to have been less advantageous, and the lack of land dispersal has driven to exceptional levels of population fragmentation.

4.
Commun Biol ; 6(1): 623, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296226

RESUMEN

Recent advances in long-read sequencing technologies have allowed the generation and curation of more complete genome assemblies, enabling the analysis of traditionally neglected chromosomes, such as the human Y chromosome (chrY). Native DNA was sequenced on a MinION Oxford Nanopore Technologies sequencing device to generate genome assemblies for seven major chrY human haplogroups. We analyzed and compared the chrY enrichment of sequencing data obtained using two different selective sequencing approaches: adaptive sampling and flow cytometry chromosome sorting. We show that adaptive sampling can produce data to create assemblies comparable to chromosome sorting while being a less expensive and time-consuming technique. We also assessed haplogroup-specific structural variants, which would be otherwise difficult to study using short-read sequencing data only. Finally, we took advantage of this technology to detect and profile epigenetic modifications among the considered haplogroups. Altogether, we provide a framework to study complex genomic regions with a simple, fast, and affordable methodology that could be applied to larger population genomics datasets.


Asunto(s)
Epigenómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genómica/métodos , Cromosoma Y
5.
bioRxiv ; 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37425881

RESUMEN

Improvements in genome sequencing and assembly are enabling high-quality reference genomes for all species. However, the assembly process is still laborious, computationally and technically demanding, lacks standards for reproducibility, and is not readily scalable. Here we present the latest Vertebrate Genomes Project assembly pipeline and demonstrate that it delivers high-quality reference genomes at scale across a set of vertebrate species arising over the last ~500 million years. The pipeline is versatile and combines PacBio HiFi long-reads and Hi-C-based haplotype phasing in a new graph-based paradigm. Standardized quality control is performed automatically to troubleshoot assembly issues and assess biological complexities. We make the pipeline freely accessible through Galaxy, accommodating researchers even without local computational resources and enhanced reproducibility by democratizing the training and assembly process. We demonstrate the flexibility and reliability of the pipeline by assembling reference genomes for 51 vertebrate species from major taxonomic groups (fish, amphibians, reptiles, birds, and mammals).

6.
Wellcome Open Res ; 7: 303, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37942213

RESUMEN

We present a genome assembly from an individual female Aplocera efformata (the lesser treble-bar; Arthropoda; Insecta; Lepidoptera; Geometridae). The genome sequence is 350 megabases in span. Most of the assembly (99.97%) is scaffolded into 32 chromosomal pseudomolecules, with W and Z sex chromosomes assembled. The complete mitochondrial genome was also assembled and is 15.4 kilobases in length. Gene annotation of this assembly on Ensembl has identified 11,393 protein coding genes.

7.
Gigascience ; 112022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365833

RESUMEN

BACKGROUND: The ring-tailed lemur (Lemur catta) is a charismatic strepsirrhine primate endemic to Madagascar. These lemurs are of particular interest, given their status as a flagship species and widespread publicity in the popular media. Unfortunately, a recent population decline has resulted in the census population decreasing to <2,500 individuals in the wild, and the species's classification as an endangered species by the IUCN. As is the case for most strepsirrhine primates, only a limited amount of genomic research has been conducted on L. catta, in part owing to the lack of genomic resources. RESULTS: We generated a new high-quality reference genome assembly for L. catta (mLemCat1) that conforms to the standards of the Vertebrate Genomes Project. This new long-read assembly is composed of Pacific Biosciences continuous long reads (CLR data), Optical Mapping Bionano reads, Arima HiC data, and 10X linked reads. The contiguity and completeness of the assembly are extremely high, with scaffold and contig N50 values of 90.982 and 10.570 Mb, respectively. Additionally, when compared to other high-quality primate assemblies, L. catta has the lowest reported number of Alu elements, which results predominantly from a lack of AluS and AluY elements. CONCLUSIONS: mLemCat1 is an excellent genomic resource not only for the ring-tailed lemur community, but also for other members of the Lemuridae family, and is the first very long read assembly for a strepsirrhine.


Asunto(s)
Lemur , Animales , Especies en Peligro de Extinción , Genoma , Genómica , Lemur/genética , Madagascar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA