Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cell ; 185(16): 2975-2987.e10, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35853453

RESUMEN

Horizontal gene transfer (HGT) is an important evolutionary force shaping prokaryotic and eukaryotic genomes. HGT-acquired genes have been sporadically reported in insects, a lineage containing >50% of animals. We systematically examined HGT in 218 high-quality genomes of diverse insects and found that they acquired 1,410 genes exhibiting diverse functions, including many not previously reported, via 741 distinct transfers from non-metazoan donors. Lepidopterans had the highest average number of HGT-acquired genes. HGT-acquired genes containing introns exhibited substantially higher expression levels than genes lacking introns, suggesting that intron gains were likely involved in HGT adaptation. Lastly, we used the CRISPR-Cas9 system to edit the prevalent unreported gene LOC105383139, which was transferred into the last common ancestor of moths and butterflies. In diamondback moths, males lacking LOC105383139 courted females significantly less. We conclude that HGT has been a major contributor to insect adaptation.


Asunto(s)
Mariposas Diurnas , Transferencia de Gen Horizontal , Animales , Mariposas Diurnas/genética , Cortejo , Evolución Molecular , Masculino , Filogenia
2.
Syst Biol ; 73(5): 807-822, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38940001

RESUMEN

Maximum likelihood (ML) phylogenetic inference is widely used in phylogenomics. As heuristic searches most likely find suboptimal trees, it is recommended to conduct multiple (e.g., 10) tree searches in phylogenetic analyses. However, beyond its positive role, how and to what extent multiple tree searches aid ML phylogenetic inference remains poorly explored. Here, we found that a random starting tree was not as effective as the BioNJ and parsimony starting trees in inferring the ML gene tree and that RAxML-NG and PhyML were less sensitive to different starting trees than IQ-TREE. We then examined the effect of the number of tree searches on ML tree inference with IQ-TREE and RAxML-NG, by running 100 tree searches on 19,414 gene alignments from 15 animal, plant, and fungal phylogenomic datasets. We found that the number of tree searches substantially impacted the recovery of the best-of-100 ML gene tree topology among 100 searches for a given ML program. In addition, all of the concatenation-based trees were topologically identical if the number of tree searches was ≥10. Quartet-based ASTRAL trees inferred from 1 to 80 tree searches differed topologically from those inferred from 100 tree searches for 6/15 phylogenomic datasets. Finally, our simulations showed that gene alignments with lower difficulty scores had a higher chance of finding the best-of-100 gene tree topology and were more likely to yield the correct trees.


Asunto(s)
Clasificación , Filogenia , Clasificación/métodos , Funciones de Verosimilitud , Animales , Genómica/métodos , Plantas/clasificación , Plantas/genética
3.
New Phytol ; 244(2): 694-707, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39166427

RESUMEN

Horizontal gene transfer (HGT) is a major driving force in the evolution of prokaryotic and eukaryotic genomes. Despite recent advances in distribution and ecological importance, the extensive pattern, especially in seed plants, and post-transfer adaptation of HGT-acquired genes in land plants remain elusive. We systematically identified 1150 foreign genes in 522 land plant genomes that were likely acquired via at least 322 distinct transfers from nonplant donors and confirmed that recent HGT events were unevenly distributed between seedless and seed plants. HGT-acquired genes evolved to be more similar to native genes in terms of average intron length due to intron gains, and HGT-acquired genes containing introns exhibited higher expression levels than those lacking introns, suggesting that intron gains may be involved in the post-transfer adaptation of HGT in land plants. Functional validation of bacteria-derived gene GuaD in mosses and gymnosperms revealed that the invasion of foreign genes introduced a novel bypass of guanine degradation and resulted in the loss of native pathway genes in some gymnosperms, eventually shaping three major types of guanine metabolism in land plants. We conclude that HGT has played a critical role in land plant evolution.


Asunto(s)
Embryophyta , Transferencia de Gen Horizontal , Genes de Plantas , Guanina , Intrones , Embryophyta/genética , Intrones/genética , Guanina/metabolismo , Filogenia , Adaptación Fisiológica/genética , Genoma de Planta , Evolución Molecular
4.
Plant J ; 111(2): 567-582, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35603488

RESUMEN

Peroxisomes are universal eukaryotic organelles essential to plants and animals. Most peroxisomal matrix proteins carry peroxisome targeting signal type 1 (PTS1), a C-terminal tripeptide. Studies from various kingdoms have revealed influences from sequence upstream of the tripeptide on peroxisome targeting, supporting the view that positive charges in the upstream region are the major enhancing elements. However, a systematic approach to better define the upstream elements influencing PTS1 targeting capability is needed. Here, we used protein sequences from 177 plant genomes to perform large-scale and in-depth analysis of the PTS1 domain, which includes the PTS1 tripeptide and upstream sequence elements. We identified and verified 12 low-frequency PTS1 tripeptides and revealed upstream enhancing and inhibiting sequence patterns for peroxisome targeting, which were subsequently validated in vivo. Follow-up analysis revealed that nonpolar and acidic residues have relatively strong enhancing and inhibiting effects, respectively, on peroxisome targeting. However, in contrast to the previous understanding, positive charges alone do not show the anticipated enhancing effect and that both the position and property of the residues within these patterns are important for peroxisome targeting. We further demonstrated that the three residues immediately upstream of the tripeptide are the core influencers, with a 'basic-nonpolar-basic' pattern serving as a strong and universal enhancing pattern for peroxisome targeting. These findings have significantly advanced our knowledge of the PTS1 domain in plants and likely other eukaryotic species as well. The principles and strategies employed in the present study may also be applied to deciphering auxiliary targeting signals for other organelles.


Asunto(s)
Señales de Direccionamiento al Peroxisoma , Señales de Clasificación de Proteína , Secuencia de Aminoácidos , Animales , Peroxisomas/metabolismo , Plantas
5.
Plant Biotechnol J ; 21(8): 1671-1681, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37155328

RESUMEN

The fungal bioluminescence pathway (FBP) was identified from glowing fungi, which releases self-sustained visible green luminescence. However, weak bioluminescence limits the potential application of the bioluminescence system. Here, we screened and characterized a C3'H1 (4-coumaroyl shikimate/quinate 3'-hydroxylase) gene from Brassica napus, which efficiently converts p-coumaroyl shikimate to caffeic acid and hispidin. Simultaneous expression of BnC3'H1 and NPGA (null-pigment mutant in A. nidulans) produces more caffeic acid and hispidin as the natural precursor of luciferin and significantly intensifies the original fungal bioluminescence pathway (oFBP). Thus, we successfully created enhanced FBP (eFBP) plants emitting 3 × 1011 photons/min/cm2 , sufficient to illuminate its surroundings and visualize words clearly in the dark. The glowing plants provide sustainable and bio-renewable illumination for the naked eyes, and manifest distinct responses to diverse environmental conditions via caffeic acid biosynthesis pathway. Importantly, we revealed that the biosynthesis of caffeic acid and hispidin in eFBP plants derived from the sugar pathway, and the inhibitors of the energy production system significantly reduced the luminescence signal rapidly from eFBP plants, suggesting that the FBP system coupled with the luciferin metabolic flux functions in an energy-driven way. These findings lay the groundwork for genetically creating stronger eFBP plants and developing more powerful biological tools with the FBP system.


Asunto(s)
Ingeniería Metabólica , Plantas , Luciferinas
6.
BMC Biol ; 20(1): 49, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35172831

RESUMEN

BACKGROUND: The morning glories (Convolvulaceae) are distributed worldwide and produce economically important crops, medicinal herbs, and ornamentals. Members of this family are diverse in morphological characteristics and trophic modes, including the leafless parasitic Cuscuta (dodders). Organelle genomes were generally used for studying plant phylogeny and genomic variations. Notably, plastomes in parasitic plants always show non-canonical features, such as reduced size and accelerated rates. However, few organelle genomes of this group have been sequenced, hindering our understanding of their evolution, and dodder mitogenome in particular. RESULTS: We assembled 22 new mitogenomes and 12 new plastomes in Convolvulaceae. Alongside previously known ones, we totally analyzed organelle genomes of 23 species in the family. Our sampling includes 16 leafy autotrophic species and 7 leafless parasitic dodders, covering 8 of the 12 tribes. Both the plastid and mitochondrial genomes of these plants have encountered variations that were rarely observed in other angiosperms. All of the plastomes possessed atypical IR boundaries. Besides the gene and IR losses in dodders, some leafy species also showed gene and intron losses, duplications, structural variations, and insertions of foreign DNAs. The phylogeny reconstructed by plastid protein coding sequences confirmed the previous relationship of the tribes. However, the monophyly of 'Merremieae' and the sister group of Cuscuta remained uncertain. The mitogenome was significantly inflated in Cuscuta japonica, which has exceeded over 800 kb and integrated massive DNAs from other species. In other dodders, mitogenomes were maintained in small size, revealing divergent evolutionary strategies. Mutations unique to plants were detected in the mitochondrial gene ccmFc, which has broken into three fragments through gene fission and splicing shift. The unusual changes likely initially happened to the common ancestor of the family and were caused by a foreign insertion from rosids followed by double-strand breaks and imprecise DNA repairs. The coding regions of ccmFc expanded at both sides after the fission, which may have altered the protein structure. CONCLUSIONS: Our family-scale analyses uncovered unusual scenarios for both organelle genomes in Convolvulaceae, especially in parasitic plants. The data provided valuable genetic resources for studying the evolution of Convolvulaceae and plant parasitism.


Asunto(s)
Cuscuta , Genoma Mitocondrial , Cuscuta/genética , Evolución Molecular , Filogenia , Plantas/genética , Plastidios/genética
7.
J Integr Plant Biol ; 65(2): 371-380, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35975710

RESUMEN

Protein ubiquitination regulates diverse cellular processes in eukaryotic organisms, from growth and development to stress response. Proteins subjected to ubiquitination can be found in virtually all subcellular locations and organelles, including peroxisomes, single-membrane and highly dynamic organelles ubiquitous in eukaryotes. Peroxisomes contain metabolic functions essential to plants and animals such as lipid catabolism, detoxification of reactive oxygen species (ROS), biosynthesis of vital hormones and cofactors, and photorespiration. Plant peroxisomes possess a complex proteome with functions varying among different tissue types and developmental stages, and during plant response to distinct environmental cues. However, how these diverse functions are regulated at the post-translational level is poorly understood, especially in plants. In this review, we summarized current knowledge of the involvement of protein ubiquitination in peroxisome protein import, remodeling, pexophagy, and metabolism, focusing on plants, and referencing discoveries from other eukaryotic systems when relevant. Based on previous ubiquitinomics studies, we compiled a list of 56 ubiquitinated Arabidopsis peroxisomal proteins whose functions are associated with all the major plant peroxisomal metabolic pathways. This discovery suggests a broad impact of protein ubiquitination on plant peroxisome functions, therefore substantiating the need to investigate this significant regulatory mechanism in peroxisomes at more depths.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Peroxisomas/metabolismo , Ubiquitinación , Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo
8.
J Virol ; 95(12)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33827944

RESUMEN

Koi herpesvirus (KHV) is highly contagious and lethal to cyprinid fish, causing significant economic losses to the carp aquaculture industry, particularly to koi carp breeders. Vaccines delivered through intramuscular needle injection or gene gun are not suitable for mass vaccination of carp. So, the development of cost-effective oral vaccines that are easily applicable at a farm level is highly desirable. In this study, we utilized chitosan-alginate capsules as an oral delivery system for a live probiotic (Lactobacillus rhamnosus) vaccine, pYG-KHV-ORF81/LR CIQ249, expressing KHV ORF81 protein. The tolerance of the encapsulated recombinant Lactobacillus to various digestive environments and the ability of the probiotic strain to colonize the intestine of carp was tested. The immunogenicity and the protective efficacy of the encapsulated probiotic vaccine was evaluated by determining IgM levels, lymphocyte proliferation, expression of immune-related genes, and viral challenge to vaccinated fish. It was clear that the chitosan-alginate capsules protected the probiotic vaccine effectively against extreme digestive environments, and a significant level (P < 0.01) of antigen-specific IgM with KHV-neutralizing activity was detected, which provided a protection rate of ca. 85% for koi carp against KHV challenge. The strategy of using chitosan-alginate capsules to deliver probiotic vaccines is easily applicable for mass oral vaccination of fish.IMPORTANCE An oral probiotic vaccine, pYG-KHV-ORF81/LR CIQ249, encapsulated by chitosan-alginate capsules as an oral delivery system was developed for koi carp against koi herpesvirus (KHV) infection. This encapsulated probiotic vaccine can be protected from various digestive environments and maintain effectively high viability, showing a good tolerance to digestive environments. This encapsulated probiotic vaccine has a good immunogenicity in koi carp via oral vaccination, and a significant level of antigen-specific IgM was effectively induced after oral vaccination, displaying effective KHV-neutralizing activity. This encapsulated probiotic vaccine can provide effective protection for koi carp against KHV challenge, which is handling-stress free for the fish, cost effective, and suitable for the mass oral vaccination of koi carp at a farm level, suggesting a promising vaccine strategy for fish.


Asunto(s)
Carpas , Enfermedades de los Peces/prevención & control , Infecciones por Herpesviridae/veterinaria , Herpesviridae/inmunología , Vacunas contra Herpesvirus/administración & dosificación , Probióticos , Proteínas Virales/inmunología , Administración Oral , Alginatos , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Cápsulas , Proliferación Celular , Quitosano , Infecciones por Herpesviridae/prevención & control , Vacunas contra Herpesvirus/inmunología , Inmunogenicidad Vacunal , Inmunoglobulina M/sangre , Lacticaseibacillus rhamnosus , Linfocitos/fisiología , Vacunación Masiva/veterinaria , Proteínas Recombinantes de Fusión , Bazo/inmunología , Bazo/metabolismo , Vacunas Sintéticas/administración & dosificación , Proteínas Virales/genética
9.
Proc Natl Acad Sci U S A ; 116(10): 4716-4721, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30765516

RESUMEN

Seed germination is an energy demanding process that requires functional mitochondria upon imbibition. However, how mitochondria fine tune seed germination, especially in response to the dynamics of environmental temperature, remains largely unknown at the molecular level. Here, we report a mitochondrial matrix-localized heat shock protein GhHSP24.7, that regulates seed germination in a temperature-dependent manner. Suppression of GhHSP24.7 renders the seed insensitive to temperature changes and delays germination. We show that GhHSP24.7 competes with GhCCMH to bind to the maturation subunit protein GhCcmFc to form cytochrome C/C1 (CytC/C1) in the mitochondrial electron transport chain. GhHSP24.7 modulates CytC/C1 production to induce reactive oxygen species (ROS) generation, which consequently accelerates endosperm rupture and promotes seed germination. Overexpression of GhHSP24.7's homologous genes can accelerate seed germination in Arabidopsis and tomato, indicating its conserved function across plant species. Therefore, HSP24.7 is a critical factor that positively controls seed germination via temperature-dependent ROS generation.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Gossypium/fisiología , Proteínas de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Sensación Térmica , Arabidopsis/genética , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Germinación , Gossypium/genética , Gossypium/crecimiento & desarrollo , Proteínas de Choque Térmico/genética , Calor , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/fisiología , Mitocondrias/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/fisiología , Especies Reactivas de Oxígeno/metabolismo , Semillas/genética , Semillas/fisiología
10.
Plant Physiol ; 182(1): 626-639, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31694900

RESUMEN

Temperature has a large impact on plant immune responses. Earlier studies identified intracellular immune receptor nucleotide-binding leucine-rich repeat (NLR) genes and salicylic acid (SA) as targets of high-temperature inhibition of plant immunity. Here, we report that moderately low temperature enhances immunity to the bacterial pathogen Pseudomonas syringae in Arabidopsis (Arabidopsis thaliana). This enhancement is dependent on SA signaling and is accompanied by up-regulation of multiple SA biosynthesis and signaling genes at lower temperature. SA signaling is repressed by jasmonic acid and ethylene at both normal and low temperatures. The inhibition of SA biosynthesis by ethylene, while mainly through ISOCHORISMATE SYNTHASE1/SALICYLIC ACID-INDUCTION DEFICIENT2 (ICS1/SID2) at normal temperature, is through ENHANCED DISEASE SUSCEPTIBILITY5 (EDS5)/SID1, ICS2, and ICS1/SID2 at lower temperature. The repression by ethylene is mediated by a direct regulation of the ethylene response transcription factor ETHYLENE INSENSITIVE3 (EIN3) on multiple SA biosynthesis and signaling genes. Thus, low temperature enhances the SA pathway to promote immunity and at the same time uses ethylene to repress multiple SA regulators to achieve fine-tuned immune responses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/farmacología , Inmunidad de la Planta/fisiología , Ácido Salicílico/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Ciclopentanos/farmacología , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Oxilipinas/farmacología , Inmunidad de la Planta/genética , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Pseudomonas syringae/patogenicidad , Temperatura
11.
Arch Virol ; 166(3): 831-840, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33486631

RESUMEN

Ovine pulmonary adenomatosis (OPA) is caused by jaagsiekte sheep retrovirus (JSRV) and is a chronic, progressive, and infectious neoplastic lung disease in sheep, which causes significant economic losses to the sheep industry. Neither a vaccine nor serological diagnostic methods to detect OPA are available. We performed a JSRV infection survey in sheep using blood samples (n = 1,372) collected in the three northeastern provinces of China (i.e., Inner Mongolia, Heilongjiang, and Jilin) to determine JSRV infection status in sheep herds using a real-time PCR assay targeting the gag gene of JSRV. The ovine endogenous retrovirus sequence was successfully amplified in all sheep samples tested (296 from the Inner Mongolia Autonomous Region, 255 from Jilin province, and 821 from Heilongjiang province). Subsequently, we attempted to distinguish exogenous JSRV (exJSRV) and endogenous JSRV (enJSRV) infections in these JSRV-positive samples using a combination assay that identifies a ScaI restriction site in an amplified 229-bp fragment of the gag gene of JSRV and a "LHMKYXXM" motif in the cytoplasmic tail region of the JSRV envelope protein. The ScaI restriction site is present in all known oncogenic JSRVs but absent in ovine endogenous retroviruses, while the "LHMKYXXM" motif is in all known exJSRVs but not in enJSRVs. Interestingly, one JSRV strain (HH13) from Heilongjiang province contained the "LHMKYXXM" motif but not the ScaI enzyme site. Phylogenetic analysis showed that strain HH13 was closely related to strain enJSRV-21 reported in the USA, indicating that HH13 could be an exogenous virus. Our results provide valuable information for further research on the genetic evolution and pathogenesis of JSRV.


Asunto(s)
Retrovirus Endógenos/genética , Productos del Gen env/genética , Retrovirus Ovino Jaagsiekte/genética , Adenomatosis Pulmonar Ovina/epidemiología , Adenomatosis Pulmonar Ovina/patología , Secuencias de Aminoácidos/genética , Animales , Secuencia de Bases , China/epidemiología , ADN Viral/análisis , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Evolución Molecular , Genoma Viral/genética , Retrovirus Ovino Jaagsiekte/clasificación , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Mapeo Restrictivo , Homología de Secuencia de Ácido Nucleico , Ovinos
12.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34575968

RESUMEN

Purple-colored leaves in plants attain much interest for their important biological functions and could be a potential source of phenotypic marker in selecting individuals in breeding. The transcriptional profiling helps to precisely identify mechanisms of leaf pigmentation in crop plants. In this study, two genetically unlike rice genotypes, the mutant purple leaf (pl) and wild (WT) were selected for RNA-sequencing and identifying the differentially expressed genes (DEGs) that are regulating purple leaf color. In total, 609 DEGs were identified, of which 513 and 96 genes were up- and down-regulated, respectively. The identified DEGs are categorized into metabolic process, carboxylic acid biosynthesis, phenylpropanoids, and phenylpropanoid biosynthesis process enrichment by GO analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) confirmed their association with phenylpropanoid synthesis, flavonoid synthesis, and phenylalanine metabolism. To explore molecular mechanism of purple leaf color, a set of anthocyanin biosynthetic and regulatory gene expression patterns were checked by qPCR. We found that OsPAL (Os02g0626100, Os02g0626400, Os04g0518400, Os05g0427400 and Os02g0627100), OsF3H (Os03g0122300), OsC4HL (Os05g0320700), and Os4CL5 (Os08g0448000) are associated with anthocyanin biosynthesis, and they were up-regulated in pl leaves. Two members of regulatory MYB genes (OsMYB55; Os05g0553400 and Os08g0428200), two bHLH genes (Os01g0196300 and Os04g0300600), and two WD40 genes (Os11g0132700 and Os11g0610700) also showed up-regulation in pl mutant. These genes might have significant and vital roles in pl leaf coloration and could provide reference materials for further experimentation to confirm the molecular mechanisms of anthocyanin biosynthesis in rice.


Asunto(s)
Antocianinas/biosíntesis , Oryza/genética , Hojas de la Planta/genética , Transcriptoma/genética , Antocianinas/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas Mutantes/genética , Oryza/crecimiento & desarrollo , Pigmentación/genética , Fitomejoramiento , Hojas de la Planta/crecimiento & desarrollo , RNA-Seq
13.
J Sci Food Agric ; 101(5): 2027-2041, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32949013

RESUMEN

BACKGROUND: Jasmonic acid (JA) is an important molecule that has a regulatory effect on many physiological processes in plant growth and development under abiotic stress. This study investigated the effect of 60 µmol L-1 of JA in seed priming (P) at 15 °C in darkness for 24 h, foliar application (F), and/or their combination effect (P + F) on two soybean cultivars - 'Nannong 99-6' (salt tolerant) and 'Lee 68' (salt sensitive) - under salinity stress (100 mmol L-1 sodium chloride (NaCl)). RESULTS: Salinity stress reduced seedling growth and biomass compared with that in the control condition. Priming and foliar application with JA and/or their combination significantly improved water potential, osmotic potential, water use efficiency, and relative water content of both cultivars under salinity stress. Similarly, seed priming with JA, foliar application of JA, and/or their combination significantly improved the following properties under salinity stress compared with the untreated seedlings: net photosynthetic rate by 68.03%, 59.85%, and 76.67% respectively; transpiration rate by 74.85%, 55.10%, and 80.26% respectively; stomatal conductance by 69.88%, 78.25%, and 26.24% respectively; intercellular carbon dioxide concentration by 61.64%, 40.06%, and 65.79% respectively; and total chlorophyll content by 47.41%, 41.02%, and 55.73% respectively. Soybean plants primed, sprayed with JA, or treated with their combination enhanced the chlorophyll fluorescence, which was damaged by salinity stress. JA treatments improved abscisic acid, gibberellic acid, and JA levels by 60.57%, 62.50% and 52.25% respectively under salt stress compared with those in the control condition. The transcriptional levels of the FeSOD, POD, CAT, and APX genes increased significantly in the NaCl-stressed seedlings irrespective of JA treatments. Moreover, JA treatment resulted in a reduction of sodium ion concentration and an increase of potassium ion concentrations in the leaf and root of both cultivars regardless of salinity stress. Monodehydroascorbate reductase, dehydroascorbate reductase, and proline contents decreased in the seedlings treated with JA under salinity stress, whereas the ascorbate content increased with JA treatment combined with NaCl stress. CONCLUSION: The application of 60 µmol L-1 JA improved plant growth by regulating the interaction between plant hormones and hydrogen peroxide, which may be involved in auxin signaling and stomatal closure under salt stress. These methods could efficiently protect early seedlings and alleviate salt stress damage and provide possibilities for use in improving soybean growth and inducing tolerance against excessive soil salinity. © 2020 Society of Chemical Industry.


Asunto(s)
Ciclopentanos/farmacología , Glycine max/fisiología , Oxilipinas/farmacología , Hojas de la Planta/efectos de los fármacos , Semillas/efectos de los fármacos , Clorofila/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Potasio/metabolismo , Estrés Salino/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/fisiología , Semillas/crecimiento & desarrollo , Semillas/fisiología , Glycine max/efectos de los fármacos , Glycine max/crecimiento & desarrollo , Estrés Fisiológico/efectos de los fármacos
14.
New Phytol ; 225(4): 1410-1427, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31442305

RESUMEN

Peroxisomes are small, ubiquitous organelles that are delimited by a single membrane and lack genetic material. However, these simple-structured organelles are highly versatile in morphology, abundance and protein content in response to various developmental and environmental cues. In plants, peroxisomes are essential for growth and development and perform diverse metabolic functions, many of which are carried out coordinately by peroxisomes and other organelles physically interacting with peroxisomes. Recent studies have added greatly to our knowledge of peroxisomes, addressing areas such as the diverse proteome, regulation of division and protein import, pexophagy, matrix protein degradation, solute transport, signaling, redox homeostasis and various metabolic and physiological functions. This review summarizes our current understanding of plant peroxisomes, focusing on recent discoveries. Current problems and future efforts required to better understand these organelles are also discussed. An improved understanding of peroxisomes will be important not only to the understanding of eukaryotic cell biology and metabolism, but also to agricultural efforts aimed at improving crop performance and defense.


Asunto(s)
Peroxisomas/fisiología , Células Vegetales/fisiología , Plantas/metabolismo , Biología Computacional , Regulación de la Expresión Génica de las Plantas , Proteómica
15.
Fish Shellfish Immunol ; 105: 327-329, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32721570

RESUMEN

Spring viremia of carp (SVC) is highly contagious and lethal disease in cyprinid fish, in particular common carps (Cyprinus carpio), causing numerous economic losses to the aquaculture industry. SVC is presently endemic disease in Europe, America, and several countries in Asia and its causative agent is spring viremia of carp virus (SVCV). In this study, a chitosan-alginate microcapsule probiotic vaccine expressing G protein of SVCV was prepared, and the immunogenicity in carps of orally administrated with the microcapsule probiotic vaccine was evaluated. Our results showed that the microcapsule probiotic vaccine can induce potent antigen-specific immune responses in carps via oral vaccination, and provide effective anti-SVCV protection for carps. Significantly, the microcapsule probiotic vaccine is suitable for mass fish immunization, suggesting a promising vaccine strategy for fish.


Asunto(s)
Alginatos/administración & dosificación , Carpas/inmunología , Quitosano/administración & dosificación , Inmunización/veterinaria , Probióticos/administración & dosificación , Infecciones por Rhabdoviridae/veterinaria , Vacunas Virales/inmunología , Administración Oral , Animales , Cápsulas , Enfermedades de los Peces/prevención & control , Rhabdoviridae/genética , Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/prevención & control , Infecciones por Rhabdoviridae/virología , Proteínas Virales/química , Vacunas Virales/administración & dosificación
16.
Plant J ; 94(5): 836-846, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29570879

RESUMEN

Peroxisomes are dynamic organelles crucial for a variety of metabolic processes during the development of eukaryotic organisms, and are functionally linked to other subcellular organelles, such as mitochondria and chloroplasts. Peroxisomal matrix proteins are imported by peroxins (PEX proteins), yet the modulation of peroxin functions is poorly understood. We previously reported that, besides its known function in chloroplast protein import, the Arabidopsis E3 ubiquitin ligase SP1 (suppressor of ppi1 locus1) also targets to peroxisomes and mitochondria, and promotes the destabilization of the peroxisomal receptor-cargo docking complex components PEX13 and PEX14. Here we present evidence that in Arabidopsis, SP1's closest homolog SP1-like 1 (SPL1) plays an opposite role to SP1 in peroxisomes. In contrast to sp1, loss-of-function of SPL1 led to reduced peroxisomal ß-oxidation activity, and enhanced the physiological and growth defects of pex14 and pex13 mutants. Transient co-expression of SPL1 and SP1 promoted each other's destabilization. SPL1 reduced the ability of SP1 to induce PEX13 turnover, and it is the N-terminus of SP1 and SPL1 that determines whether the protein is able to promote PEX13 turnover. Finally, SPL1 showed prevalent targeting to mitochondria, but rather weak and partial localization to peroxisomes. Our data suggest that these two members of the same E3 protein family utilize distinct mechanisms to modulate peroxisome biogenesis, where SPL1 reduces the function of SP1. Plants and possibly other higher eukaryotes may employ this small family of E3 enzymes to differentially modulate the dynamics of several organelles essential to energy metabolism via the ubiquitin-proteasome system.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peroxisomas/metabolismo , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Peroxinas/metabolismo , Proteínas/genética , Proteínas/fisiología , Alineación de Secuencia , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/fisiología
18.
J Exp Bot ; 70(4): 1183-1195, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30649398

RESUMEN

Plasma membrane (PM) recovery from the impaired dry state is essential for seed germination, but its underlying mechanism remains unclear. In this study, we found that ZmANN33 and ZmANN35, two annexin genes in maize, encode proteins that participate in PM recovery during seed germination. The expression of both genes was up-regulated during seed germination and strongly repressed by chilling (either 15 or 5 °C) as compared with the normal temperature (25 °C). In addition, the increased membrane damage caused by chilling imbibition was correlated with suppressed expression of ZmANN33 and ZmANN35, while rapid recovery of their expression levels accompanied the rescue of the damaged membrane. Arabidopsis seedlings ectopically expressing ZmANN33 or ZmANN35 had longer seedling length than wild-type (WT) plants during the recovery period after 3 d of chilling stress, indicating the positive roles of these two gene products in the plant's recovery from chilling injury. Moreover, these transgenic seedlings had lower lipid peroxidation and higher peroxidase activities than WT during the recovery period. Consistently, root cells of these transgenic seedlings had more intact PM after chilling stress, supporting the proposition that ZmANN33 and ZmANN35 contribute to the maintenance of PM integrity. The enhanced PM integrity is likely due to the accelerated exocytotic process after chilling stress. We also showed that both ZmANN33 and ZmANN35 localized in the cytosol near the plasma membrane. Thus, we conclude that ZmANN33 and ZmANN35 play essential roles in membrane recovery during maize seed germination.


Asunto(s)
Anexinas/genética , Membrana Celular/metabolismo , Germinación/genética , Proteínas de Plantas/genética , Semillas/fisiología , Zea mays/fisiología , Anexinas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Expresión Génica Ectópica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Zea mays/genética
19.
Subcell Biochem ; 89: 3-45, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30378017

RESUMEN

Plant peroxisomes are required for a number of fundamental physiological processes, such as primary and secondary metabolism, development and stress response. Indexing the dynamic peroxisome proteome is prerequisite to fully understanding the importance of these organelles. Mass Spectrometry (MS)-based proteome analysis has allowed the identification of novel peroxisomal proteins and pathways in a relatively high-throughput fashion and significantly expanded the list of proteins and biochemical reactions in plant peroxisomes. In this chapter, we summarize the experimental proteomic studies performed in plants, compile a list of ~200 confirmed Arabidopsis peroxisomal proteins, and discuss the diverse plant peroxisome functions with an emphasis on the role of Arabidopsis MS-based proteomics in discovering new peroxisome functions. Many plant peroxisome proteins and biochemical pathways are specific to plants, substantiating the complexity, plasticity and uniqueness of plant peroxisomes. Mapping the full plant peroxisome proteome will provide a knowledge base for the improvement of crop production, quality and stress tolerance.


Asunto(s)
Peroxisomas/química , Peroxisomas/metabolismo , Células Vegetales/química , Células Vegetales/metabolismo , Proteoma/metabolismo , Proteómica , Arabidopsis/química , Arabidopsis/citología , Proteínas de Arabidopsis/metabolismo
20.
Proc Natl Acad Sci U S A ; 113(46): E7307-E7316, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27799549

RESUMEN

Peroxisomes are ubiquitous eukaryotic organelles that play pivotal roles in a suite of metabolic processes and often act coordinately with other organelles, such as chloroplasts and mitochondria. Peroxisomes import proteins to the peroxisome matrix by peroxins (PEX proteins), but how the function of the PEX proteins is regulated is poorly understood. In this study, we identified the Arabidopsis RING (really interesting new gene) type E3 ubiquitin ligase SP1 [suppressor of plastid protein import locus 1 (ppi1) 1] as a peroxisome membrane protein with a regulatory role in peroxisome protein import. SP1 interacts physically with the two components of the peroxisome protein docking complex PEX13-PEX14 and the (RING)-finger peroxin PEX2. Loss of SP1 function suppresses defects of the pex14-2 and pex13-1 mutants, and SP1 is involved in the degradation of PEX13 and possibly PEX14 and all three RING peroxins. An in vivo ubiquitination assay showed that SP1 has the ability to promote PEX13 ubiquitination. Our study has revealed that, in addition to its previously reported function in chloroplast biogenesis, SP1 plays a role in peroxisome biogenesis. The same E3 ubiquitin ligase promotes the destabilization of components of two distinct protein-import machineries, indicating that degradation of organelle biogenesis factors by the ubiquitin-proteasome system may constitute an important regulatory mechanism in coordinating the biogenesis of metabolically linked organelles in eukaryotes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de la Membrana/metabolismo , Biogénesis de Organelos , Peroxisomas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Cloroplastos/metabolismo , Peroxinas/genética , Peroxinas/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA