Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Environ Manage ; 355: 120449, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38432012

RESUMEN

N-acyl homoserine lactones (AHLs) function as signaling molecules influencing microbial community dynamics. This study investigates the impact of exogenously applied AHLs on methane production during waste-activated sludge (WAS) anaerobic digestion (AD). Nine AHL types, ranging from 10-4 to 10 µg/g VSS, were applied, comparing microbial community composition under optimal AHL concentrations. Firmicutes, Bacteroidetes, Chloroflexi, and Proteobacteria were identified in anaerobic digesters with C4-HSL, C6-HSL, and C8-HSL. Compared to the control, Halobacterota increased by 19.25%, 20.87%, and 9.33% with C7-HSL, C10-HSL, and C12-HSL. Exogenous C7-HSL enhanced the relative abundance of Methanosarcina, Romboutsia, Sedimentibacter, Proteiniclasticum, Christensenellaceae_R-7_group. C10-HSL increased Methanosarcina abundance. C4-HSL, C6-HSL, C8-HSL, C10-HSL, and C12-HSL showed potential to increase unclassified_Firmicutes. Functional Annotation of Prokaryotic Taxa (FAPROTAX) predicted AHLs' impact on related functional genes, providing insights into their role in AD methanogenesis regulation. This study aimed to enhance the understanding of the influence of different types of exogenous AHLs on AD and provide technical support for regulating the methanogenesis efficiency of AD by exogenous AHLs.


Asunto(s)
4-Butirolactona , 4-Butirolactona/análogos & derivados , Acil-Butirolactonas , Acil-Butirolactonas/farmacología , Anaerobiosis , 4-Butirolactona/farmacología , Aguas del Alcantarillado , Lactonas
2.
J Environ Sci (China) ; 124: 901-914, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36182193

RESUMEN

Scale not only affects the taste and color of water, but also increases the risks of osteoporosis and cardiovascular diseases associated with drinking it. As a popular beverage, tea is rich many substances that have considerable potential for scale inhibition, including protein, tea polyphenols and organic acids. In this study, the effect of tea brewing on scale formation was explored. It was found that the proteins, catechins and organic acids in tea leaves could be released when the green tea was brewed in water with sufficient hardness and alkalinity. The tea-released protein was able to provide carboxyl groups to chelate with calcium ions (Ca2+), preventing the Ca2+ from reacting with the carbonate ions (CO32-). The B rings of catechins were another important structure in the complexation of Ca2+ and magnesium ions (Mg2+). The carboxyl and hydroxyl groups on the organic acids was able to form five-membered chelating rings with Ca2+ and Mg2+, resulting in a significant decrease in Ca2+ from 100.0 to 60.0 mg/L. Additionally, the hydrogen ions (H+) provided by the organic acids consumed and decreased the alkalinity of the water from 250.0 to 131.4 mg/L, leading to a remarkable reduction in pH from 8.93 to 7.73. It further prevented the bicarbonate (HCO3-) from producing CO32- when the water was heated. The reaction of the tea constituents with the hardness and alkalinity inhibited the formation of scale, leading to a significant decrease in turbidity from 10.6 to 1.4 NTU. Overall, this study provides information to help build towards an understanding of the scale inhibition properties of tea and the prospects of tea for anti-scaling in industrial applications.


Asunto(s)
Calcio , Magnesio , Bicarbonatos , Protones , Té/química , Agua
3.
Nanotechnology ; 33(21)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35134791

RESUMEN

The growing chloramphenicol (CAP) in wastewater brought a serious threat to the activity of activated sludge and the spread of antibiotics resistance bacteria. In this study, a highly ordered nanoporous Co3O4layer on Co foil through anodization was prepared as cathode for nitro-group reduction and electrodeposited with Pd particles for dechlorination to reduce CAP completely. After 3 h treatment, almost 100% of CAP was reduced. Co2+ions in Co3O4served as catalytic sites for electrons transfer to CAP through a redox circle Co2+-Co3+-Co2+, which triggered nitro-group reduction at first. With the presence of Pd particles, more atomic H* were generated for dechlorination, which increased 22% of reduction efficiency after 3 h treatment. Therefore, a better capacity was achieved by Pd/Co3O4cathode (K = 0.0245 min-1,Kis reaction constant) than by other cathodes such as Fe/Co3O4(K = 0.0182 min-1), Cu/Co3O4(K = 0.0164 min-1), and pure Co3O4(K = 0.0106 min-1). From the proposed reaction pathway, the ultimate product was carbonyl-reduced AM (dechlorinated aromatic amine product of CAP) without antibacterial activity, which demonstrated this cathodic technology was a feasible way for wastewater pre-treatment.

4.
J Environ Manage ; 315: 115148, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35512601

RESUMEN

Lysozyme can efficiently accelerate solubilization and hydrolysis of waste activated sludge (WAS) for anerobic digestion. However, the effect of lysozyme was easily to be inhibited by metal ions in WAS. The impact of magnesium ions (Mg2+) on lysozyme catalyze WAS disintegration was investigated in this study. The effect of lysozyme on WAS hydrolysis could be hindered by Mg2+. Relatively high concentrations (>50 mg/L) of Mg2+ in sludge significantly reduced the release of soluble polysaccharides and proteins from WAS, while sulfate ions or chloride ions caused no such effect. Proteins were difficult to be extracted from extracellular polymeric substances (EPS) of WAS in the presence of Mg2+ (>10 mg/L) due to the divalent cation bridging (DCB) behavior, while the extraction of polysaccharides was not significantly affected. The polysaccharides and proteins in the inner EPS layer were transferred to the outer layer during the lysozyme treatment, and total quantities of both components maintained constantly. At least 23.1% lysozymes were trapped in the liquid phase of 100 mg Mg2+/L in the first hour. Mg2+ could significantly affect the transfer of lysozyme from liquid phase to the inner layer of sludge. Mg2+ neutralized the negative surface charge of the sludge particles, which hindered the absorption of positively charged lysozyme molecules by sludge flocs from the liquid phase. The proteins of TB-EPS had higher ratios of α-helixes and tighter structures than those in LB-EPS, which could impede the lysozyme transfer to the cell wall.


Asunto(s)
Magnesio , Aguas del Alcantarillado , Cationes Bivalentes , Muramidasa/metabolismo , Polisacáridos , Proteínas , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos
5.
J Environ Manage ; 302(Pt B): 114074, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34763190

RESUMEN

In this study, a novel pretreatment of cation exchange resin (CER) coupled NaCl addition was proposed to enhance waste activated sludge (WAS) hydrolysis and promote short-chain fatty acids (SCFAs) production in the anaerobic fermentation process. At the optimal pretreatment condition of 3 g/g SS CER and 15 g/L NaCl, considerable SCOD (i.e. 5107 mg/L, 35.4% of TCOD) was released after 2-day coupled treatment, which provided sufficient organic substance for the subsequent SCFAs production. The sludge hydrolysis mechanism was illustrated, i.e. CER triggered extracellular polymeric substances (EPS) disruption and NaCl induced microbial cells lysis. The synergistic interaction between CER and NaCl pretreatment was investigated and application potential of fermentative liquid was evaluated after the coupled pretreatment-enhanced anaerobic fermentation. In the presence of abundant biodegradable substrates in the fermentative liquid, 4742 mg COD/L (i.e. 388 mg COD/g VSS) of SCFAs production was achieved within 6-day anaerobic fermentation, mainly composed of acetic and propionic acids (70.4% of total SCFAs).


Asunto(s)
Aguas del Alcantarillado , Cloruro de Sodio , Resinas de Intercambio de Catión , Matriz Extracelular de Sustancias Poliméricas , Ácidos Grasos Volátiles
6.
Bioresour Technol ; 394: 130168, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38072075

RESUMEN

Despite numerous treatments have been developed to enhance anaerobic fermentation of waste activated sludge, the innovative cation exchange (CE) approach has been rarely reported, little attempt was conducted to revealcarbon source fate. The interphase carbon balance was illustrated to clarify endogenous carbon dissolution, biotransformation,and recovery patterns. By CE-mediated divalent cation removal, almost 34.72 % of particulate carbon sources were dissolved in 2-day treatment, corresponding to soluble carbon content of 1165.58 mg C/L. Most of the originally dissolved carbon sources (58.01-66.81 %) were bio-transformed to volatile fatty acids with high bioavailability, while the further transformation to biogas was inhibited, contributing to recoverable carbon source accumulation. Overall, 21.38 % of total solid carbon sources were recovered through 8-day fermentation, the carbon extraction was implemented by solid-liquid separation with carbon loss of 14.21-22.91 %, manifesting the valid carbon recovery of 85.05-87.96 mg C/g VSS. Such CE-driven carbon recovery provided negentropy benefits in sustainable cycle economy.


Asunto(s)
Carbono , Aguas del Alcantarillado , Fermentación , Anaerobiosis , Ácidos Grasos Volátiles/metabolismo , Cationes
7.
Chemosphere ; 356: 141902, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582158

RESUMEN

Sediment siltation has been regarded as the serious challenge in sewer system, which dominantly root in the gelatinous extracellular polymeric substance (EPS) structure and cohesive ability. Considering the crucial roles of divalent cation bridging and macromolecular biopolymer winding in sediment EPS formation and adhesive behavior, an innovative combination strategy of sodium pyrophosphate (SP)-mediated divalent cation chelation and alkaline biopolymer hydrolysis was developed to degenerate sediment adhesion. At the SP dosage of 0.25 g/g TS and the alkaline pH 12, the SP + pH 12 treatment triggered structural transformation of aromatic proteins (α-helix to ß-turn) and functional group shifts of macromolecular biopolymers. In this case, the deconstruction and outward dissolution of gelatinous biopolymers were achievable, including proteins (tyrosine-like proteins, tryptophan-like proteins), humic acids, fulvic acids, polysaccharides and various soluble microbial products. These were identified as the major driving forces for sediment EPS matrix disintegration and bio-aggregation deflocculation. The extraction EPS content was obviously increased by 18.88 mg COD/g TS. The sediment adhesion was sensitive to EPS matrix damage and gelatinous biopolymer deconstruction, leading to considerable average adhesion degeneration to 0.98 nN with reduction rate of 78.32%. As such, the sediments could be disrupted into dispersive fragments with increased surface electronegativity and electric repulsion (up to -45.6 mV), thereby the sediment resistance to hydraulic erosion was impaired, providing feasibility for in-situ sediment floating and removal by gravity sewage flow in sewer.


Asunto(s)
Aguas del Alcantarillado , Biopolímeros/química , Hidrólisis , Aguas del Alcantarillado/química , Quelantes/química , Eliminación de Residuos Líquidos/métodos , Cationes/química , Concentración de Iones de Hidrógeno , Matriz Extracelular de Sustancias Poliméricas/química
8.
Water Res ; 250: 121032, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157598

RESUMEN

The MNBs-coagulation process as a novel and cleaning enhanced coagulation process has been demonstrated to enhance the removal efficiency of hydrophilic organics. In this study, while continuing the concept of cleaning production, the MNBs-coagulation process was first applied to the ultrafiltration process and was expected to alleviate the ultrafiltration membrane fouling. This study investigated the effect of the involvement of MNBs in coagulation-ultrafiltration process (the MC-UF process) on the fouling behaviour of ultrafiltration membrane based on the calculation of membrane resistance distribution and the fitting of membrane fouling model. In addition, the NOM removal efficiency, floc characteristics analysis and membrane hydrophilicity analysis were used to illustrate the mechanism of mitigating ultrafiltration mebrane fouling by the MC-UF process. The experimental results showed that the involvement of MNBs in the coagulation-ultrafiltration process was able to reduce the irreversible fouling and TMP by 43.1 % and 41.6 % respectively. This phenomenon could be attributed to the involvement of MNBs in the coagulation process to improve the removal efficiency of hydrophilic organics and to enhance the characteristics of flocs, thus reducing the possibility of hydrophilic organics and broken flocs entering and blocking the membrane pores. In addition, the FT-IR spectral changes before and after the floc breakage were analyzed by 2D-COS technique in this study, and it was found for the first time that the participation of MNBs in the coagulation process could change the sequence of functional group transformation within the floc, and promote the generation of hydrogen bonds between flocs by hindering the generation of hydroxyl groups (-OH), and improve the shear resistance and regrowth capacity of flocs while reducing the possibility of broken flocs entering and blocking membrane pores. In summary, the MC-UF process proposed in this study can significantly mitigate ultrafiltration membrane fouling while meeting cleaning production, providing theoretical support for the application of the process to practical engineering.


Asunto(s)
Ultrafiltración , Purificación del Agua , Ultrafiltración/métodos , Espectroscopía Infrarroja por Transformada de Fourier , Purificación del Agua/métodos , Membranas Artificiales , Floculación , Sustancias Húmicas/análisis
9.
Water Res ; 254: 121340, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428235

RESUMEN

Membrane electrochemical reactor (MER) shows superiority to electrochemical oxidation (EO) in high salinity organic wastewater (HSOW) treatment, but requirement of proton exchange membranes (PEM) increases investment and maintenance cost. In this work, the feasibility of using low-cost pressure-driven membranes as the separation membrane in MER system was systematically investigated. Commonly used pressure-driven membranes, including loose membranes such as microfiltration (MF) and ultrafiltration (UF), as well as dense membranes like nanofiltration (NF) and reverse osmosis (RO), were employed in the study. When tested in a contamination-free solution, MF and UF exhibited superior electrochemical performance compared to PEM, with comparable pH regulation capabilities in the short term. When foulant (humic acid, Ca2+ and Mg2+) presented in the feed, UF saved the most energy (43 %) compared to PEM with similar removal rate of UV254 (∼85 %). In practical applications of MER for treating nanofiltration concentrate (NC) of landfill leachate, UF saved 27 % energy compared to PEM per cycle with the least Ca2+ and Mg2+ retention in membrane and none obvious organics permeation. For fouled RO and PEM with ion transport impediment, water splitting was exacerbated, which decreased the percentage of oxidation for organics. Overall, replacing of PEM with UF significantly reduce the costs associated with both the investment and operation of MER, which is expected to broaden the practical application for treating HSOW.


Asunto(s)
Protones , Purificación del Agua , Salinidad , Estudios de Factibilidad , Ósmosis
10.
Water Environ Res ; 96(2): e10994, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38351362

RESUMEN

This study aimed to improve anaerobic digestion (AD) efficiency through the addition of zero-valent iron (ZVI) and biogas slurry. This paper demonstrated that methane production was most effectively promoted at a biogas slurry reflux ratio of 60%. The introduction of ZVI into anaerobic systems does not enhance its bioavailability. However, both biogas slurry reflux and the combination of ZVI with biogas slurry reflux increase the relative abundance of microorganisms involved in the direct interspecific electron transfer (DIET) process. Among them, the dominant microorganisms Methanosaeta, Methanobacterium, Methanobrevibacter, and Methanolinea accounted for over 60% of the total methanogenic archaea. The Tax4Fun function prediction results indicate that biogas slurry reflux and the combination of ZVI with biogas slurry reflux can increase the content of key enzymes in the acetotrophic and hydrotrophic methanogenesis pathways, thereby strengthening these pathways. The corrosion of ZVI promotes hydrogen production, and the biogas slurry reflux provided additional alkaline and anaerobic microorganisms for the anaerobic system. Their synergistic effect promoted the growth of hydrotrophic methanogens and improved the activities of various enzymes in the hydrolysis and acidification phases, enhanced the system's buffer capacity, and prevented secondary environmental pollution. PRACTITIONER POINTS: Optimal methane production was achieved at a biogas slurry reflux ratio of 60%. Biogas slurry reflux in anaerobic digestion substantially reduced discharge. ZVI addition in combination with biogas slurry reflux facilitates the DIET process.


Asunto(s)
Hierro , Aguas del Alcantarillado , Anaerobiosis , Aguas del Alcantarillado/microbiología , Biocombustibles , Metano/metabolismo , Reactores Biológicos
11.
Water Res ; 251: 121139, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38237458

RESUMEN

In the post-COVID-19 pandemic era, various antimicrobials have emerged and concentrated in waste-activated sludge (WAS), affecting the biological treatment of WAS. However, there is still a knowledge gap in the dynamic response and adaptive mechanism of anaerobic microbiome under exogenous antimicrobial stress. This study found that methylisothiazolinone (MIT, as a typic antimicrobial) caused an interesting lag effect on the volatile fatty acids (VFAs) promotion in the WAS anaerobic fermentation process. MIT was effective to disintegrate the extracellular polymeric substances (EPS), and those functional anaerobic microorganisms were easily exposed and negatively impacted by the MIT interference after the loss of protective barriers. Correspondingly, the ecological interactions and microbial metabolic functions related to VFA biosynthesis (e.g., pyruvate metabolism) were downregulated at the initial stage. The syntrophic consortia gradually adapted to the interference and attenuated the MIT stress by activating chemotaxis and resistance genes (e.g., excreting, binding, and inactivating). Due to the increased bioavailable substrates in the fermentation systems, the dominant microorganisms (i.e., Clostridium and Caloramator) with both VFAs production and MIT-tolerance functions have been domesticated. Moreover, MIT disrupted the syntrophic interaction between acetogens and methanogens and totally suppressed methanogens' metabolic activities. The VFA production derived from WAS anaerobic fermentation was therefore enhanced due to the interference of antimicrobial MIT stress. This work deciphered dynamic changes and adaptive evolution of anaerobic syntrophic consortia in response to antimicrobial stress and provided guidance on the evaluation and control of the ecological risks of exogenous pollutants in WAS treatment.


Asunto(s)
Antiinfecciosos , Microbiota , Tiazoles , Humanos , Fermentación , Anaerobiosis , Aguas del Alcantarillado/química , Pandemias , Ácidos Grasos Volátiles/metabolismo , Concentración de Iones de Hidrógeno
12.
Sci Total Environ ; 893: 164896, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37329905

RESUMEN

Deposition of sediment in sewers decreased flow capacity, with harmful gases and pipe erosion. Sediment floating and removal remained challenges due to its gelatinous structure, which induced strong erosion resistance. This study proposed an innovative alkaline treatment for destructuring gelatinous organic matters and improving hydraulic flushing capacity of sediments. At the optimal pH 11.0 condition, the gelatinous extracellular polymeric substance (EPS) and microbial cells were disrupted, with numerous outward migration and solubilization of proteins, polysaccharides and humus. The aromatic protein solubilization (tryptophan-like and tyrosine-like proteins) and humic acid-like substance deconstruction were the major driving factors for sediment cohesion reduction, which disintegrated the bio-aggregation and increased the surface electronegativity. Meanwhile, the variations of functional groups (CC, CO, COO-, CN, NH, C-O-C, C-OH, OH) also contributed to the interaction breakage and glutinous structure disruption of sediment particles. It was found that the rising pH conditions reduced sediment adhesion and promoted particle floating. Solubilizations of total suspended solids and volatile suspended solids were increased by 12.8 and 9.4 times, respectively, while the sediment adhesion was reduced by 3.8 fold. The alkaline treatment greatly improved sediment erosion and flushing capacities under shear stress of gravity sewage flow. Such sustainable strategy only cost 36.4 CNY per sewer meter length, which was 29.5-55.0 % of the high-pressure water jet flushing and perforated tube flushing approaches.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Gases , Sedimentos Geológicos/química
13.
Chemosphere ; 341: 139931, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37669717

RESUMEN

This study sought to investigate the relationship between N-acyl homoserine lactones (AHLs) and methanogenic microorganisms, focusing on endogenous AHLs in the anaerobic digestion (AD) process. By analyzing waste activated sludge (WAS) samples, we examine the changes in microbial communities and the AHLs-methanogens connection. The Mantel test and Spearman correlation analysis were conducted to gain novel insights into the AD process. Our findings demonstrate that thermal hydrolysis pretreatment (THP) modifies AHL concentrations during AD, thereby enhancing methanogenic bacteria activity and regulating social interactions among microorganisms. In the Eth group (AD of THP samples labeled Eth), Methanobacterium and Methanosarcina accounted for over 80% of the methanogenic bacteria, with correlation coefficients greater than 0.5 between these bacterial taxa and N-hexyl-l-homoserine lactone (C6-HSL) and N-enanthyl-l-homoserine lactone (C7-HSL).


Asunto(s)
Acil-Butirolactonas , Aguas del Alcantarillado , Anaerobiosis , Hidrólisis
14.
Chemosphere ; 341: 140102, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37683954

RESUMEN

In decades, anaerobic fermentation with short-chain fatty acids (SCFAs) recovery from excess sludge have attained rising attention. However, rigid particulate organic matter (POMs) structure with slow hydrolysis limited anaerobic fermentation performance of excess sludge. Remarkable sludge hydrolysis performance was supposed to be achievable by the synchronous EPS repture and microbial cell lysis. This study clarified the improvement of overall anaerobic fermentation performance by combination treatment of lysozyme (Lyso) catalysis and metal regulation (MR). The Lyso + MR treatment triggered EPS rupture by protein structure deflocculation while catalyzing microbial cell lysis, which promoted massive extracellular and intracellular POMs hydrolysis. As a result, a significant amount of SCOD (5646.67 mg/L) was produced. Such endogenous organic matters hydrolysis led to considerable SCFAs accumulation (3651.14 mg COD/L) through 48-h anaerobic fermentation at 1.75 g/g SS cation-exchange resin and Lyso dosage of 10% (w/w), which was 5.945 times higher than that in the control. Additionally, it suggested that most of the recovered SCFAs remained in fermentative liquid after chemical conditioning and mechanical dewatering towards solid-liquid separation, which provided considerable economic benefit of 363.6-1059.1 CNY/ton SS.


Asunto(s)
Resinas de Intercambio de Catión , Aguas del Alcantarillado , Hidrólisis , Aguas del Alcantarillado/química , Muramidasa , Fermentación , Ácidos Grasos Volátiles , Biopolímeros , Concentración de Iones de Hidrógeno , Anaerobiosis
15.
Sci Total Environ ; 885: 163759, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37146803

RESUMEN

Improving the anaerobic fermentation (AF) efficiency of excess sludge (ES) is essential for attaining biosolid minimization, stabilization, resource recovery, and carbon-emission reduction. Along these lines, here, the synergistic mechanism of protease and lysozyme for enhancing hydrolysis and AF efficiency with better recovery of volatile fatty acids (VFAs) was thoroughly investigated. Single lysozyme was capable of reducing the zeta potential and fractal dimension when dosed into the ES-AF system, which was beneficial for increasing the contact probability between proteases and extracellular proteins. Moreover, the weight-averaged molecular weight of the loosely-bound extracellular polymeric substance (LB-EPS) reduced from 1867 to 1490 in the protease-AF group, which facilitated the penetration of EPS by the lysozyme. The soluble DNA and extracellular DNA (eDNA) of the enzyme cocktail pretreated group increased by 23.24 % and 77.09 %, and the cell viability decreased after 6-hour hydrolysis, demonstrating a better hydrolysis efficiency. Remarkably, the asynchronous dosed enzyme cocktail pretreatment was proven a better strategy to enhance both the solubilization and hydrolysis processes since the synergistic effect of these two enzymes can exclude the mutual interference. As a result, the VFAs were increased by 1.26 times higher than the blank group. The underlying mechanism of an environmental-friendly and effective strategy was examined to promote ES hydrolysis and acidogenic fermentation, which was beneficial for the recovery of VFAs and carbon-emission reduction.


Asunto(s)
Péptido Hidrolasas , Aguas del Alcantarillado , Fermentación , Péptido Hidrolasas/metabolismo , Muramidasa/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Endopeptidasas , Ácidos Grasos Volátiles/metabolismo
16.
Chemosphere ; 307(Pt 3): 135920, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35948103

RESUMEN

Short-chain fatty acids (SCFAs) generation through anaerobic fermentation has been regarded as a promising pathway to achieve carbon recovery and economic benefits in waste activated sludge management. Despite the cation exchange resin (CER) assistant anaerobic fermentation strategy has been previously reported for enhancing anaerobic fermentation, the overlarge CER usage and serious CER pollution have limited its engineering application. This study provided a reconsideration for the operation pattern modification. Through 4-day anaerobic fermentation with CER residence period shrinking to 1 day, 40.9% sludge VSS solubilization and reduction were achieved, triggering a considerable sludge hydrolysis rate of 28.4%. Thereby, SCFAs production was improved to 264.8 mg COD/g VSS. Such performances were approximately 80.2-87.8% of those with conventional CER residence period (8 days). The organic composition distribution and parallel factor analysis demonstrated that similar biodegradability and utilizability of fermentative liquid were achievable with various operation patterns. Compared with the conventional operation pattern, the modified operation pattern with shortened CER residence period (1 day) also displayed satisfying anaerobic fermentation efficiency and numerous engineering bene fits, e.g. decreased CER usage, reduced engineering footprint, relieved CER fouling, and increased operation convenience. The findings might provide sustainable development for CER assistant anaerobic fermentation strategy and enlighten the direction of anaerobic fermentation process.


Asunto(s)
Incrustaciones Biológicas , Aguas del Alcantarillado , Anaerobiosis , Incrustaciones Biológicas/prevención & control , Carbono , Resinas de Intercambio de Catión , Cationes , Ácidos Grasos Volátiles , Fermentación , Concentración de Iones de Hidrógeno
17.
J Hazard Mater ; 432: 128634, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35306411

RESUMEN

Sewer is considered a potential hotspot for antibiotic resistance, but the occurrence and proliferation of antibiotic resistance genes (ARGs) under trace antibiotics exposure have received little attention. This work evaluated the effects of tetracycline (TC) and sulfamethoxazole (SMX) individually and in combination in the sewer system and revealed the related mechanisms of ARG proliferation. The relative abundance of tetA and sul1 increased the most under TC and SMX stress, respectively, whereas sul1 increased the most under combined stress. Intl1 was abundant in both the liquid phase and the biofilm, and redundancy analysis confirmed that horizontal gene transfer was the main reason for the proliferation of ARGs. The increase in extracellular polymeric substances (EPS) secretion and the enhancement of the main hydrophobic functional groups facilitated the accumulation of biofilms, which promoted the proliferation of ARGs in biofilms. The relative abundance of most ARGs in the liquid phase was significantly correlated with EPS, protein and tryptophan-like substances. Furthermore, the microbial community structure and diversity affected the proliferation and spread of ARGs in the sewer. These findings contribute to our further understanding of the proliferation and development of ARGs in the sewer and lay the foundation for the front-end control of ARGs.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Microbiota , Antibacterianos/farmacología , Biopelículas , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Sulfametoxazol , Tetraciclina/farmacología , Aguas Residuales
18.
Sci Total Environ ; 850: 157845, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35932858

RESUMEN

A novel self-organized nanoporous VO-Co3O4/Co cathode was prepared via anodization and plasma treatment and obtained a significant nitrate reduction efficiency. In the anodization, an oxide layer with the nano-sized pore structure initially grew in-situ on the Co substrate and showed a better surface area. Subsequently, He-plasma increased surface oxygen vacancies (VO) from 24 % to 57 %. Electrons in vacancies were charged into empty eg orbital of low-spin Co3+(Oh, octahedral) and firstly generated high-spin Co2+(Oh) with the configuration of t2g6eg1, accounting for 71.7 % of cobalt species. Accordingly, two original mechanisms (Vo-catalyzed and Co2+(Oh)-catalyzed) were concluded in this study. Oxygen vacancies increased the charge intensity and served as absorption sites in nitrate reduction. Meanwhile, massive Co2+(Oh) provided electrons in the eg orbital with a higher energy state and mediated the faster electron transfer through a Co2+-Co3+-Co2+ redox cycle, compared with Co2+ (Td, tetrahedral). Ultimately, a faster reaction kinetic of 0.0220 min-1 was achieved by VO-Co3O4 than other cathodes e.g., Co3O4 (0.0150 min-1). Such VO-Co3O4/Co cathode-based denitrification strategy displayed great advantages in engineering application and completely removed 90 % of TN from actual wastewater.


Asunto(s)
Nanoporos , Nitratos , Catálisis , Cobalto/química , Desnitrificación , Electrodos , Óxidos de Nitrógeno , Óxidos/química , Oxígeno/química , Aguas Residuales
19.
J Hazard Mater ; 435: 129061, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35650744

RESUMEN

The development of high efficient photocatalysts for antibiotics contamination in water remains a severe challenge. In this study, a novel step-scheme (S-scheme) photocatalytic heterojunction nanocomposites were fabricated from integrating AgCl nanoparticles on the MIL-100(Fe) octahedron surface through facile multi-stage stirring strategy. The S-scheme heterojunction structure in AgCl/MIL-100(Fe) (AM) nanocomposite provided a more rational utilization of electrons (e-) and holes (h+), accelerated the carrier transport at the junction interface, and enhanced the overall photocatalytic performance of nanomaterials. The visible-light-driven photocatalysts were used to degrade sulfamethazine (SMZ) which attained a high removal efficiency (99.9%). The reaction mechanisms of SMZ degradation in the AM photocatalytic system were explored by electron spin resonance (ESR) and active species capture experiments, which superoxide radical (•O2-), hydroxyl radical (•OH), and h+ performed as major roles. More importantly, the SMZ degradation pathway and toxicity assessment were proposed. There were four main pathways of SMZ degradation, including the processes of oxidation, hydroxylation, denitrification, and desulfonation. The toxicity of the final products in each pathway was lower than that of the parent according to the toxicity evaluation results. Therefore, this work might provide new insights into the environmentally-friendly photocatalytic processes of S-scheme AM nanocomposites for the efficient degradation of antibiotics pollutants.


Asunto(s)
Luz , Sulfametazina , Antibacterianos/química , Catálisis
20.
Bioresour Technol ; 351: 127006, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35304256

RESUMEN

This study introduced the excellent improvement of enzyme cocktail (lysozyme and protease) on hydrolysis efficiency and the role of reducing carbon emission as an alternative carbon source. The best dosing method after optimization was to add four parts of lysozyme at 0 h and one part of protease at 1 h. The extracellular proteins and polysaccharides increased by 118% and 64% respectively under the optimal dosing mode. Enzyme cocktails reduced more organic matters and extended the distribution of sludge particles in the small particle size part. The enzymatic-treated sludge could reduce 21.09 kg CO2/t VSS if utilized to replace methanol for denitrification carbon source. Enzyme cocktails did better in enhancing both solubilization and hydrolysis than single enzymes under the optimal method. This study will provide a more integrated and comprehensive system for enzymatic pretreatment and new insight into the enzymatic pretreatment enhancing hydrolysis and reducing carbon emission.


Asunto(s)
Carbono , Aguas del Alcantarillado , Hidrólisis , Muramidasa/metabolismo , Péptido Hidrolasas/metabolismo , Eliminación de Residuos Líquidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA