Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Small ; 20(6): e2306354, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37775306

RESUMEN

Achieving superior photomineralization of pollutants relies on a rational design of a dual S-scheme with a robust internal electric field (IEF). In this study, to tackle the low mineralization rate in type-II In2 O3 /In2 S3 (IO/IS) systems, an organic-inorganic dual S-scheme In2 O3 /PDI/In2 S3 (IO/PDI/IS) nanostructured photocatalyst is synthesized via a method combining solvent-induced self-assembly and electrostatic forces. Due to the unique energy band position and strong IEF, the photoinduced defect-transit dual S-scheme IO/PDI/IS facilitates the degradation of lignin and antibiotics. Notably, a promising mineralization rate of 80.9% for sodium lignosulfonate (SL) is achieved. The charge transport pathway of IO/PDI/IS are further validated through the analysis of in situ X-ray photoelectron spectroscopy (in situ XPS), density functional theory calculations, and radical trapping experiments. In-depth, two possible pathways for the photocatalytic degradation of lignin are proposed based on the intermediates monitored by liquid chromatography-mass spectrometry (LC-MS). This study presents a new strategy for the design of organic-inorganic dual S-scheme photocatalysts with a robust IEF for pollutant degradation.

2.
Molecules ; 29(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611699

RESUMEN

Improving the thermal storage stability of nanosuspension concentrate (SC) prepared from low-melting-point pesticide is a recognized problem. In this work, using pyraclostrobin as the raw material, 25 wt% of pyraclostrobin nano-SC was prepared through a water-based grinding method, and the optimal grinding conditions were obtained as follows: a grinding time of 23 h, D-3911 as dispersant and a dispersant dosage of 12 wt%. The pyraclostrobin nano-SC D90 size prepared based on this best formula was 216 nm. Adding glycerin could improve the stability of nano-SC at room temperature, but its thermal storage stability was still poor. For this problem, sodium lignosulfonate and cetyltrimethylammonium bromide (NaLS/CTAB) colloidal spheres were prepared through electrostatic and hydrophobic self-assembly and characterized. The delamination and precipitation of nano-SC can be significantly improved by adding an appropriate amount of colloidal spheres, and the nano-SC D90 size decreased from 2726 to 1023 nm after 7 days of thermal storage. Farmland experiments indicated the control efficiency of pyraclostrobin nano-SC against flowering cabbage downy mildew disease was about 30% higher than that of SC. Especially after adding the wetting agent, the effect of nano-SC could be comparable to that of commercial Kairun (currently the best pyraclostrobin formulation in the world).

3.
Langmuir ; 39(9): 3431-3438, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36802455

RESUMEN

Photocatalytic water splitting to hydrogen is a sustainable energy conversion method. However, there is a lack of sufficiently accurate measurement methods for an apparent quantum yield (AQY) and a relative hydrogen production rate (rH2) at the moment. Thus, a more scientific and reliable evaluation method is highly required to allow the quantitative comparison of photocatalytic activity. Herein, a simplified kinetic model of photocatalytic hydrogen evolution was established, the corresponding photocatalytic kinetic equation was deduced, and a more accurate calculation method is proposed for the AQY and the maximum hydrogen production rate vH2,max. At the same time, new physical quantities, absorption coefficient kL and specific activity SA, were proposed to sensitively characterize the catalytic activity. The scientificity and practicality of the proposed model and the physical quantities were systematically verified from the theoretical and experimental levels.

4.
Langmuir ; 39(14): 5065-5077, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36972499

RESUMEN

The introduction of metal vacancies into n-type semiconductors could efficiently construct intimate contact interface p-n homojunctions to accelerate the separation of photogenerated carriers. In this work, a cationic surfactant occupancy method was developed to synthesize an indium-vacancy (VIn)-enriched p-n amorphous/crystal homojunction of indium sulfide (A/C-IS) for sodium lignosulfonate (SL) degradation. The amount of VIn in the A/C-IS could be regulated by varying the content of added cetyltrimethylammonium bromide (CTAB). Meanwhile, the steric hindrance of CTAB produced mesopores and macropores, providing transfer channels for SL. The degradation rates of A/C-IS to SL were 8.3 and 20.9 times higher than those of crystalline In2S3 and commercial photocatalyst (P25), respectively. The presence of unsaturated dangling bonds formed by VIn reduced the formation energy of superoxide radicals (•O2-). In addition, the inner electric field between the intimate contact interface p-n A/C-IS promoted the migration of electron-hole pairs. A reasonable degradation pathway of SL by A/C-IS was proposed based on the above mechanism. Moreover, the proposed method could also be applicable for the preparation of p-n homojunctions with metal vacancies from other sulfides.

5.
Int J Biol Macromol ; 273(Pt 2): 132899, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38844275

RESUMEN

Despite the widespread utilization of nano silver composites in the domain of catalytic hydrogenation of aromatic pollutants in wastewater, certain challenges persist, including the excessive consumption of chemical reagents during the preparation process and the difficulty in recycling. In this study, silver ions were reduced in-situ by taking advantage of the adsorptive and reducing capacities of hydroxyls and amino groups on lignin porous microspheres (LPMs) under mild ultrasonic conditions, and lignin porous microspheres loaded with silver nanoparticles (Ag@LPMs) were conveniently prepared. Ag@LPMs had excellent catalytic and cycling performances for p-nitrophenol (4-NP), methylene blue (MB) and methyl orange (MO). The 4-NP could be completely reduced to 4-AP within 155 s under the catalysis of Ag@LPMs, with a pseudo-first-order kinetic constant of 1.28 min-1. Furthermore, Ag@LPMs could still complete the catalytic reduction of 4-NP within 10 min after five cycles. Ag@LPMs with the particle size ranging from 100 to 200 µm conferred ease of recycling, and the porous structure effectively resolved the issue of sluggish mass transfer encountered during the catalytic process. At the same time, the binding force of nano silver and LPMs obtained by ultrasonic was stronger than that of heating, so the materials prepared by ultrasonic had better cycling performance. Silver ions concentration and pH value in the preparation process affected the catalytic performance of Ag@LPMs, 50 mmol/L Ag+ and pH value of 7 turned out to be the optimization conditions.


Asunto(s)
Lignina , Nanopartículas del Metal , Microesferas , Plata , Lignina/química , Plata/química , Catálisis , Porosidad , Nanopartículas del Metal/química , Nitrofenoles/química , Oxidación-Reducción , Cinética
6.
Nat Commun ; 15(1): 734, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38272912

RESUMEN

Thought-out utilization of entire lignocellulose is of great importance to achieving sustainable and cost-effective biorefineries. However, there is a trade-off between efficient carbohydrate utilization and lignin-to-chemical conversion yield. Here, we fractionate corn stover into a carbohydrate fraction with high enzymatic digestibility and reactive lignin with satisfactory catalytic depolymerization activity using a mild high-solid process with aqueous diethylamine (DEA). During the fractionation, in situ amination of lignin achieves extensive delignification, effective lignin stabilization, and dramatically reduced nonproductive adsorption of cellulase on the substrate. Furthermore, by designing a tandem fractionation-hydrogenolysis strategy, the dissolved lignin is depolymerized and aminated simultaneously to co-produce monophenolics and pyridine bases. The process represents the viable scheme of transforming real lignin into pyridine bases in high yield, resulting from the reactions between cleaved lignin side chains and amines. This work opens a promising approach to the efficient valorization of lignocellulose.

7.
Bioresour Technol ; 369: 128357, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36414140

RESUMEN

Recycling cellulase can reduce the cost of lignocellulosic enzymatic hydrolysis. Here, a lignin-grafted sulfobetaine (LSB) was first synthesized by grafting sulfobetaine (SB) on enzymatic hydrolysis lignin (EHL). LSB had a sensitive response of pH and temperature. LSB dissolved under the conditions of lignocellulosic enzymatic hydrolysis (pH 5.0, 50 °C). After hydrolysis, LSB co-precipitated with cellulase when lowering pH of the hydrolysate to 4.0 and cooling to 25 °C. When 3.0 g/L LSB-100 was added to the hydrolysis system of corncob residue (CCR), 70 % of amount of cellulase was saved. LSB had a remarkable response and stronger cellulase recovery capacity. This was attributed that carboxylate radical in LSB was protonated, and positive and negative ions of SB associated to form salt at 25 °C. This work provides a new idea for reducing the cost for preparing fermentable sugars from lignocellulose, and increasing the added value of EHL.


Asunto(s)
Celulasa , Celulasa/química , Temperatura , Lignina/química , Hidrólisis , Concentración de Iones de Hidrógeno
8.
ACS Appl Mater Interfaces ; 15(46): 53871-53880, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37945537

RESUMEN

In situ integration of enzymes with covalent organic frameworks (COFs) to form hybrid biocatalysts is both significant and challenging. In this study, we present an innovative strategy employing deep eutectic solvents (DESs) to synergistically synthesize COFs and shield cytochrome c (Cyt c). By utilizing DESs as reaction solvents in combination with water, we successfully achieved rapid and in situ encapsulation of Cyt c within COFs (specifically COF-TAPT-TFB) under ambient conditions. The resulting Cyt c@COF-TAPT-TFB composite demonstrates a remarkable preservation of enzymatic activity. This encapsulation strategy also imparts exceptional resistance to organic solvents and exhibits impressive recycling stability. Additionally, the enhanced catalytic efficiency of Cyt c@COF-TAPT-TFB in a photoenzymatic cascade reaction is also showcased.


Asunto(s)
Citocromos c , Estructuras Metalorgánicas , Disolventes Eutécticos Profundos , Catálisis , Solventes
9.
Int J Biol Macromol ; 253(Pt 5): 127026, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37751818

RESUMEN

In this study, a porous polyamine lignin microsphere (PPALM) was prepared through the inverse suspension polymerization combined with freeze-drying, during which sodium lignosulfonate and polyetheramine (PEA) were crosslinked with epichlorohydrin (ECH) as the cross-linker. By adjusting the amount of ECH and PEA, the optimized PPALM exhibited suitable crosslinking degree, ensuring a balance of framework flexibility and rigidity, thereby facilitating the formation of abundant and fine pores. PPALM demonstrated good mechanical properties comparable to commercial sulfonated polystyrene cationic resin, with a porosity of 61.12 % and an average pore size of 283.51 nm. The saturation adsorption capacity of PPALM for Pb2+ was measured to be 156.82 mg/g, and it remained above 120 mg/g after five cycles of regeneration. Particularly, the concentration of 50 mg/L Pb2+ solution could be reduced to 0.98 mg/L after flowing through the PPALM packed bed, indicating the great potential of PPALM for application in wastewater treatment.


Asunto(s)
Lignina , Contaminantes Químicos del Agua , Adsorción , Porosidad , Microesferas , Plomo
10.
J Colloid Interface Sci ; 647: 318-330, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37262994

RESUMEN

Quantitatively understanding of interaction mechanism between lignin and cellulases is essential for the efficient improvement of lignocellulose enzymatic hydrolysis. However, the individual contribution of multiple forces between lignin and cellulases to the non-productive adsorption of enzymes still remains deeply ambiguous, especially in situations of near enzymatic hydrolysis temperatures. Herein, atomic force microscopy (AFM) and computational simulations were utilized to quantitatively analyze the intermolecular forces between lignin and enzyme at 25 °C and 40 °C. Our results unveiled that an increase in temperature obviously improved adsorption capacity and total intermolecular forces between lignin and cellulases. This positive relationship mainly comes from the increase in the decay length of hydrophobic forces for lignin-cellulases when temperature increases. Different from the hydrophobic interaction which provides long-range part of attractions, van der Waals forces dominate the intermolecular force only at approaches < 2 nm. On the other hand, electrostatic forces exhibited repulsive effects, and its intensity and distance were limited due to the low surface potential of cellulases. Short-range forces including hydrogen bonding (main) and π-π stacking (minor) stabilize the non-specific binding of enzymes to lignin, but increasing temperature reduces hydrogen bond number. Therefore, the relative contribution of long-range forces increased markedly at higher temperatures, which benefits protein capture and brings lignin and cellulase close together. Finally, the structure-activity relationships between lignin physicochemical properties and its inhibitory effect to enzymes indicated that hydrophobic interactions, hydrogen bonding, and steric effects drive the final adsorption capacity and glucose yields. This work provides quantitative and basic insights into the mechanism of lignin-cellulase interfacial interactions and guides design of saccharification enhancement approaches.


Asunto(s)
Celulasa , Celulasas , Lignina/química , Celulasas/metabolismo , Celulasa/metabolismo , Temperatura , Adsorción , Hidrólisis
11.
ACS Appl Mater Interfaces ; 15(6): 8157-8168, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36724351

RESUMEN

Metal-organic frameworks (MOFs) have become promising accommodation for enzyme immobilization in recent years. However, the microporous nature of MOFs affects the accessibility of large molecules, resulting in a significant decline in biocatalysis efficiency. Herein, a novel strategy is reported to construct macroporous MOFs by metal competitive coordination and oxidation with induced defect structure using a transition metal (Fe2+) as a functional site. The feasibility of in situ encapsulating ß-glucosidase (ß-G) within the developed macroporous MOFs endows an enzyme complex (ß-G@MOF-Fe) with remarkably enhanced synergistic catalysis ability. The 24 h hydrolysis rate of ß-G@MOF-Fe (with respect to cellobiose) is as high as approximately 99.8%, almost 32.2 times that of free ß-G (3.1%). Especially, the macromolecular cellulose conversion rate of ß-G@MOF-Fe reached 90% at 64 h, while that of ß-G@MOFs (most micropores) was only 50%. This improvement resulting from the expansion of pores (significantly increased at 50-100 nm) can provide enough space for the hosted biomacromolecules and accelerate the diffusion rate of reactants. Furthermore, unexpectedly, the constructed ß-G@MOF-Fe showed a superior heat resistance of up to 120 °C, attributing to the new strong coordination bond (Fe2+-N) formation through the metal competitive coordination. Therefore, this study offers new insights to solve the problem of the high-temperature macromolecular substrate encountered in the actual reaction.

12.
ChemSusChem ; 15(21): e202201354, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-35934832

RESUMEN

Due to the poor enzyme thermal stability, the efficient conversion of high crystallinity cellulose into glucose in aqueous phase over 50 °C is challenging. Herein, an enzyme-induced MOFs encapsulation of ß-glucosidase (ß-G) strategy was proposed for the first time. By using various methods, including SEM, XRD, XPS, NMR, FTIR and BET, the successful preparation of a porous channel-type flower-like enzyme complex (ß-G@MOFs) was confirmed. The prepared enzyme complex (ß-G@MOFs) materials showed improved thermal stability (from 50 °C to 100 °C in the aqueous phase) and excellent resistance to ionic liquids (the reaction temperature was as high as 110 °C) compared to the free enzyme (ß-G). Not only the catalytic hydrolysis of cellulose by single enzyme (ß-G) in ionic liquid was realized, but also the high-temperature continuous reaction performance of the enzyme was significantly improved. Benefiting from the significantly improved heat resistance, the ß-G@MOFs exhibited 32.1 times and 34.2 times higher enzymatic hydrolysis rate compared to ß-G for cellobiose and cellulose substrates, respectively. Besides, the catalytic activity of ß-G@MOFs was retained up to 86 % after five cycles at 110 °C. This was remarkable because the fixation of the enzyme by the MOFs ensured that the folded structure of the enzyme would not expand at high temperatures, allowing the native conformation of the encapsulated protein well-maintained. Furthermore, we believe that this structural stability was caused by the confinement of flower-like porous MOFs.


Asunto(s)
Líquidos Iónicos , Estructuras Metalorgánicas , beta-Glucosidasa/química , beta-Glucosidasa/metabolismo , Celulosa/química , Hidrólisis , Temperatura , Calor , Líquidos Iónicos/química , Agua
13.
J Colloid Interface Sci ; 587: 334-346, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33370659

RESUMEN

Green synthesis of silver nanoparticles (AgNPs) has received increasing attention. In this study, AgNPs were prepared through in-situ reduction by aminated alkaline lignin (AAL). Compared with alkaline lignin (AL), AAL exhibited stronger reduction capacity (increased by 36%) due to the introduced amine groups and better water solubility. Moreover, the coordination effect of amine groups on AAL improved the binding force between lignin and AgNPs. The content of AgNPs in AgNPs/AAL composite were 2.4 times higher than that in AgNPs/AL, such content could be further increased through increasing the reduction pH or prolonging the heating time. The results of XPS, XRD and TEM showed that the AgNPs were spherical and monodisperse with an average particle size about 17 nm. Additionally, the size of AgNPs was affected by the amination degree of lignin. AgNPs/AAL exhibited good catalytic performance for the reduction of 4-nitrophenol to 4-aminophenol, and this compound could be easily recovered and reused for at least eight cycles.

14.
ACS Appl Mater Interfaces ; 13(37): 44243-44253, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34499461

RESUMEN

The photoreforming of lignocellulose is a novel method to produce clean and sustainable H2 energy. However, the catalytic systems usually show low activity under ultraviolet light; thus, this reaction is very limited at present. Visible light-responsive metal-free two-dimensional graphite-phased carbon nitride (g-C3N4) is a good candidate for photocatalytic hydrogen production, but its activity is hindered by a bulky architecture. Although reported layered g-C3N4 modified with active functional groups prepared by the chemical exfoliation enhances the photocatalytic activity, it lost the intrinsic structure and thus is not conducive to understand the structure-activity relationship. Herein, we report an intrinsic monolayer g-C3N4 (∼0.32 nm thickness) prepared by nitrogen-protected ball milling in water, which shows good performance of photoreforming lignocellulose to H2 driven by visible light. The exciton binding energy of g-C3N4 was estimated from the temperature-dependent photoluminescence spectra, which is a key factor for subsequent charge separation and energy transfer. It is found that monolayer g-C3N4 with smaller exciton binding energy increases the free exciton concentrations and promotes the separation efficiency of charge carriers, thereby effectively improving its performance of photocatalytic reforming of lignocellulose, even the virgin lignocellulose and waste lignocellulose. This result could lead to more active catalysts to photoreform the raw biomass, making it possible to provide clean energy directly from locally unused biomass.

15.
RSC Adv ; 10(23): 13830-13837, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35492971

RESUMEN

In the formulation of pesticide Suspension Concentrate (SC), some photosensitive pesticides are easily decomposed in the preparation. In this study, a hindered amine modified lignosulfonate (SL-Temp) with anti-photolysis function was synthesized using 4-amino-2,2,6,6-tetramethylpiperidine (Temp) and Sodium Lignosulfonate (SL) to solve this problem. The obtained SL-Temp was used as a dispersant to prepare 5% SC of avermectin, which shows good physical stability. The decomposition rate of the avermectin in SC after accelerating hot storage is 0%, which is much lower than 6.1% when SL was used as the dispersant. After being exposed to UV irradiation for 60 hours, the highest retention rate of avermectin is 87.1% when SL-Temp was used as the dispersant, which is much higher than 73.6% when SL was used as the dispersant, and also higher than 76.3% when a small molecule antioxidant (BHT) was added to the formulation. QCM-D studies revealed that the SL-Temp adsorption layer on avermectin particles can compete to absorb partial ultraviolet rays, hinder the penetration of ultraviolet light, and scavenge the free radicals produced by photooxidation, so as to protect avermectin from degradation.

16.
Bioresour Technol ; 304: 122974, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32062498

RESUMEN

Most additives that capable of enhancing enzymatic hydrolysis of lignocellulose are petroleum-based, which are not easy to recycle with poor biodegradability. In this work, highly recyclable and biodegradable sodium caseinate (SC) was used to enhance lignocellulosic hydrolysis with improved cellulase recyclability. When the pH decreased from 5.5 to 4.8, more than 96% SC could be precipitated from the solution and recovered. Adding SC increased enzymatic digestibility of dilute acid pretreated eucalyptus (Eu-DA) from 39.5% to 78.2% under Eu-DA loading of 10 wt% and pH = 5.5, and increase cellulase content in 72 h hydrolysate from only 15.2% of the original to 60.0%, which facilitated the recovery of cellulases through re-adsorption by fresh substrates. With multiple cycles of re-adsorption, application of SC not only increased the sugar yield of Eu-DA by 95.5%, but also reduced cellulase loading by 40%.


Asunto(s)
Celulasa , Celulasas , Caseínas , Hidrólisis , Lignina
17.
Bioresour Technol ; 283: 112-119, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30901583

RESUMEN

The isoelectric point (pI) of lignin-based surfactant is an important factor in the enhancement on the enzymatic hydrolysis of lignocellulose. In this work, lignin carboxylate (LC) and quaternary ammonium lignin carboxylates (LCQ-x, x%: the mass ratio of quaternizing agent to enzymatic hydrolysis lignin) with different isoelectric points were synthesized. LC or LCQ-x with pI significantly lower or higher than 4.8 reduced the non-productive adsorption of cellulase on lignin, but for the significant inhibitory effect on cellulase activity, their enhancements on the enzymatic hydrolysis of lignocellulose were not remarkable. However, LCQ-x with pI around 4.8 preserved the cellulase activity, and significantly reduced the non-productive adsorption of cellulase, therefore remarkably enhanced the enzymatic hydrolysis. 2 g/L LC, LCQ-40 (pI = 5.0) and LCQ-100 (pI = 9.2) increased the enzymatic digestibility of pretreated eucalyptus from 35.2% to 53.4%, 95.3% and 60.4% respectively. In addition, for the excellent pH-response performance, LCQ could be efficiently recovered after enzymatic saccharification.


Asunto(s)
Celulasa/metabolismo , Eucalyptus/metabolismo , Lignina/metabolismo , Tensoactivos/metabolismo , Adsorción , Concentración de Iones de Hidrógeno , Hidrólisis , Punto Isoeléctrico
18.
J Agric Food Chem ; 67(22): 6248-6256, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31090409

RESUMEN

A lignin amphoteric surfactant and betaine could enhance the enzymatic hydrolysis of lignocellulose and recover cellulase. The effects of lignosulfonate quaternary ammonium salt (SLQA) and dodecyl dimethyl betaine (BS12) on enzymatic hydrolysis digestibility, ethanol yield, yeast cell viability, and other properties of high-solid enzymatic hydrolysis and fermentation of a corncob residue were studied in this research. The results suggested that SLQA and 1 g/L BS12 effectively improved the ethanol yield through enhancing enzymatic hydrolysis. SLQA had no significant effect on the yeast cell membrane and glucose fermentation. However, 5 g/L BS12 reduced the ethanol yield as a result of the fact that 5 g/L BS12 damaged the yeast cell membrane and inhibited the conversion of glucose to ethanol. Our research also suggested that 1 g/L BS12 enhanced the ethanol yield of corncob residue fermentation, which was attributed to the fact that lignin in the corncob adsorbed BS12 and decreased its concentration in solution to a safe level for the yeast.


Asunto(s)
Biotecnología/métodos , Celulosa/metabolismo , Etanol/química , Etanol/metabolismo , Lignina/metabolismo , Residuos/análisis , Levaduras/metabolismo , Zea mays/microbiología , Biocatálisis , Biotecnología/instrumentación , Celulasa/química , Fermentación , Glucosa/metabolismo , Hidrólisis , Lignina/química , Tensoactivos/química , Zea mays/metabolismo
19.
Bioresour Technol ; 249: 1-8, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29035726

RESUMEN

Effects of nonionic surfactants on enzymatic hydrolysis of Avicel at different agitation rates and solid loadings and the mechanism were studied. Nonionic surfactants couldn't improve the enzymatic hydrolysis efficiency at 0 and 100rpm but could enhance the enzymatic hydrolysis significantly at high agitation rate (200 and 250rpm). Cellulase was easily deactivated at high agitation rate and the addition of nonionic surfactants can protect against the shear-induced deactivation, especially when the cellulase concentration was low. When 25mg protein/L of cellulase solution was incubated at 200rpm for 72h, the enzyme activity increased from 36.0% to 89.5% by adding PEG4600. Moreover nonionic surfactants can compete with enzyme in air-liquid interface and reduce the amount of enzyme exposed in the air-liquid interface. The mechanism was proposed that nonionic surfactants could enhance the enzymatic hydrolysis of Avicel by reducing the cellulase deactivation caused by shear force and air-liquid interface.


Asunto(s)
Celulasa , Celulosa , Hidrólisis , Tensoactivos
20.
J Agric Food Chem ; 65(50): 11011-11019, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29156122

RESUMEN

Lignin is a vastly underutilized biomass resource. The preparation of water-dispersed lignin nanoparticles is an effective way to realize the high-value utilization of lignin. However, the currently reported preparation methods of lignin nanoparticles still have some drawbacks, such as the requirement for toxic organic solvent or chemical modification, complicated operation process, and poor dispersibility. Here, lignin/sodium dodecyl sulfate (SDS) composite nanoparticles (LSNPs) with outstanding water dispersibility and a size range of 70-200 nm were facilely prepared via acidifying the mixed basic solution of alkaline lignin and SDS. No harsh chemical was needed. The formation mechanism was systematically studied. Results indicated that the LSNPs were obtained by acid precipitation of the mixed micelles formed by the self-assembly of lignin and SDS. In addition, on the basis of the LSNP-stabilized Pickering emulsions, lignin/polyurea composite microcapsules combining the excellent chemical stability of a synthetic polyurea shell with the fantastic antiphotolysis and antioxidant properties of lignin were successfully prepared.


Asunto(s)
Lignina/química , Nanopartículas/química , Dodecil Sulfato de Sodio/química , Cápsulas/química , Composición de Medicamentos , Emulsiones/química , Tamaño de la Partícula , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA