Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Gene Med ; 26(7): e3711, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967638

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of upper and lower motor neurons with an unknown etiology. The difficulty of recovering biological material from patients led to employ lymphoblastoid cell lines (LCLs) as a model for ALS because many pathways, typically located in neurons, are also activated in these cells. METHODS: To investigate the expression of coding and long non-coding RNAs in LCLs, a transcriptomic profiling of sporadic ALS (SALS) and mutated patients (FUS, TARDBP, C9ORF72 and SOD1) and matched controls was realized. Thus, differentially expressed genes (DEGs) were investigated among the different subgroups of patients. Peripheral blood mononuclear cells (PBMCs) were isolated and immortalized into LCLs via Epstein-Barr virus infection; RNA was extracted, and RNA-sequencing analysis was performed. RESULTS: Gene expression profiles of LCLs were genetic-background-specific; indeed, only 12 genes were commonly deregulated in all groups. Nonetheless, pathways enriched by DEGs in each group were also compared, and a total of 89 Kyoto Encyclopedia of Genes and Genomes (KEGG) terms were shared among all patients. Eventually, the similarity of affected pathways was also assessed when our data were matched with a transcriptomic profile realized in the PBMCs of the same patients. CONCLUSIONS: We conclude that LCLs are a good model for the study of RNA deregulation in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Perfilación de la Expresión Génica , Mutación , Transcriptoma , Humanos , Esclerosis Amiotrófica Lateral/genética , Femenino , Masculino , Persona de Mediana Edad , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Leucocitos Mononucleares/metabolismo , Superóxido Dismutasa-1/genética , Línea Celular , Anciano , Regulación de la Expresión Génica , Proteínas de Unión al ADN , Proteína FUS de Unión a ARN
2.
Environ Res ; 249: 118323, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38336161

RESUMEN

Telomere length (TL) is a biomarker for cellular senescence and TL erosion is predictive of the risk for age-related diseases. Despite being genetically determined at birth, TL may be susceptible to modifications through epigenetic mechanisms. Pollutant agents are considered one of the major threats to both human and planetary health. Their ability to cross the placental barrier and induce oxidative stress in fetal cells is particularly concerning and it may be associated with early TL erosion. In consideration of the timely relevance of this topic, we conducted a literature review on the impact of prenatal exposure to pollutant agents on newborn TL. The search yielded a total of 1099 records, of which only 32 met the inclusion criteria for the review. These criteria included the participation of human subjects, a longitudinal design or collection of longitudinal data, reporting of original TL data, and a focus on exposure to pollutant agents. The majority of the studies reported a significant inverse association between prenatal exposure to pollutant agents and TL. Furthermore, the second trimester of pregnancy emerged as a special sensitive period for the occurrence of pollutant agent-driven TL modifications. Sex differences were inconsistently reported across studies. This review contributes to highlighting biochemical pathways for the threats of environmental pollution to human health. Future research is warranted to further highlight potential buffering mechanisms.


Asunto(s)
Contaminantes Ambientales , Humanos , Embarazo , Femenino , Contaminantes Ambientales/toxicidad , Telómero/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Exposición a Riesgos Ambientales/efectos adversos , Recién Nacido , Exposición Materna/efectos adversos , Contaminación Ambiental/efectos adversos
3.
Mol Cell ; 63(5): 796-810, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27570075

RESUMEN

Stress granules (SGs) are ribonucleoprotein complexes induced by stress. They sequester mRNAs and disassemble when the stress subsides, allowing translation restoration. In amyotrophic lateral sclerosis (ALS), aberrant SGs cannot disassemble and therefore accumulate and are degraded by autophagy. However, the molecular events causing aberrant SG formation and the molecular players regulating this transition are largely unknown. We report that defective ribosomal products (DRiPs) accumulate in SGs and promote a transition into an aberrant state that renders SGs resistant to RNase. We show that only a minor fraction of aberrant SGs is targeted by autophagy, whereas the majority disassembles in a process that requires assistance by the HSPB8-BAG3-HSP70 chaperone complex. We further demonstrate that HSPB8-BAG3-HSP70 ensures the functionality of SGs and restores proteostasis by targeting DRiPs for degradation. We propose a system of chaperone-mediated SG surveillance, or granulostasis, which regulates SG composition and dynamics and thus may play an important role in ALS.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/genética , Gránulos Citoplasmáticos/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ribosomas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Arsenitos/farmacología , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/efectos de los fármacos , Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Células HeLa , Proteínas de Choque Térmico/genética , Homeostasis , Humanos , Leupeptinas/farmacología , Chaperonas Moleculares , Estrés Oxidativo , Inhibidores de Proteasoma/farmacología , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteolisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasas/metabolismo , Ribosomas/genética
4.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38473944

RESUMEN

Oxidative stress (OS) and inflammation are two important and well-studied pathological hallmarks of neurodegenerative diseases (NDDs). Due to elevated oxygen consumption, the high presence of easily oxidizable polyunsaturated fatty acids and the weak antioxidant defenses, the brain is particularly vulnerable to oxidative injury. Uncertainty exists over whether these deficits contribute to the development of NDDs or are solely a consequence of neuronal degeneration. Furthermore, these two pathological hallmarks are linked, and it is known that OS can affect the inflammatory response. In this review, we will overview the last findings about these two pathways in the principal NDDs. Moreover, we will focus more in depth on amyotrophic lateral sclerosis (ALS) to understand how anti-inflammatory and antioxidants drugs have been used for the treatment of this still incurable motor neuron (MN) disease. Finally, we will analyze the principal past and actual clinical trials and the future perspectives in the study of these two pathological mechanisms.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/metabolismo , Estrés Oxidativo/fisiología , Antioxidantes/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Inflamación/tratamiento farmacológico
5.
Clin Immunol ; 249: 109299, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36963449

RESUMEN

Aicardi-Goutières Syndrome (AGS) is a rare neuro-inflammatory disease characterized by increased expression of interferon-stimulated genes (ISGs). Disease-causing mutations are present in genes associated with innate antiviral responses. Disease presentation and severity vary, even between patients with identical mutations from the same family. This study investigated DNA methylation signatures in PBMCs to understand phenotypic heterogeneity in AGS patients with mutations in RNASEH2B. AGS patients presented hypomethylation of ISGs and differential methylation patterns (DMPs) in genes involved in "neutrophil and platelet activation". Patients with "mild" phenotypes exhibited DMPs in genes involved in "DNA damage and repair", whereas patients with "severe" phenotypes had DMPs in "cell fate commitment" and "organ development" associated genes. DMPs in two ISGs (IFI44L, RSAD2) associated with increased gene expression in patients with "severe" when compared to "mild" phenotypes. In conclusion, altered DNA methylation and ISG expression as biomarkers and potential future treatment targets in AGS.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Malformaciones del Sistema Nervioso , Metilación de ADN , Expresión Génica , Índice de Severidad de la Enfermedad , Malformaciones del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/genética , Interferones/genética , Mutación , Biomarcadores , Estudios de Casos y Controles
6.
EMBO Rep ; 22(5): e51740, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33738926

RESUMEN

Stress granules (SGs) are dynamic condensates associated with protein misfolding diseases. They sequester stalled mRNAs and signaling factors, such as the mTORC1 subunit raptor, suggesting that SGs coordinate cell growth during and after stress. However, the molecular mechanisms linking SG dynamics and signaling remain undefined. We report that the chaperone Hsp90 is required for SG dissolution. Hsp90 binds and stabilizes the dual-specificity tyrosine-phosphorylation-regulated kinase 3 (DYRK3) in the cytosol. Upon Hsp90 inhibition, DYRK3 dissociates from Hsp90 and becomes inactive. Inactive DYRK3 is subjected to two different fates: it either partitions into SGs, where it is protected from irreversible aggregation, or it is degraded. In the presence of Hsp90, DYRK3 is active and promotes SG disassembly, restoring mTORC1 signaling and translation. Thus, Hsp90 links stress adaptation and cell growth by regulating the activity of a key kinase involved in condensate disassembly and translation restoration.


Asunto(s)
Gránulos Citoplasmáticos , Transducción de Señal , Citoplasma , Gránulos Citoplasmáticos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosforilación , ARN Mensajero/metabolismo
7.
Dev Psychopathol ; : 1-11, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36855816

RESUMEN

Maternal antenatal anxiety is an emerging risk factor for child emotional development. Both sex and epigenetic mechanisms, such as DNA methylation, may contribute to the embedding of maternal distress into emotional outcomes. Here, we investigated sex-dependent patterns in the association between antenatal maternal trait anxiety, methylation of the brain-derived neurotrophic factor gene (BDNF DNAm), and infant negative emotionality (NE). Mother-infant dyads (N = 276) were recruited at delivery. Maternal trait anxiety, as a marker of antenatal chronic stress exposure, was assessed soon after delivery using the Stait-Trait Anxiety Inventory (STAI-Y). Infants' BDNF DNAm at birth was assessed in 11 CpG sites in buccal cells whereas infants' NE was assessed at 3 (N = 225) and 6 months (N = 189) using the Infant Behavior Questionnaire-Revised (IBQ-R). Hierarchical linear analyses showed that higher maternal antenatal anxiety was associated with greater 6-month-olds' NE. Furthermore, maternal antenatal anxiety predicted greater infants' BDNF DNAm in five CpG sites in males but not in females. Higher methylation at these sites was associated with greater 3-to-6-month NE increase, independently of infants' sex. Maternal antenatal anxiety emerged as a risk factor for infant's NE. BDNF DNAm might mediate this effect in males. These results may inform the development of strategies to promote mothers and infants' emotional well-being.

8.
Immun Ageing ; 19(1): 49, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289502

RESUMEN

BACKGROUND: Frailty is a complex, multi-dimensional age-related syndrome that increases the susceptibility to adverse health outcomes and poor quality of life. A growing consensus supports the contribution of chronic inflammation and immune system alterations to frailty, however a clear role of such alterations remains to be elucidated. Furthermore, pro- and anti-inflammatory cytokines together with other signaling molecules might spread from activated cells to the adjacent ones through extracellular vesicles (EVs), which have also a role in cellular aging. The aim of the present research was to investigate if EVs play a role in the immune function in frailty.  RESULTS: In 219 older adults aged 76-78 years, selected from the InveCe.Ab study (Abbiategrasso, Italy), we investigated inflammation and EVs-mediated intercellular communication. C-reactive protein (CRP) and pro- (IL-1ß, IL-2, IL-6, IL-8, IL-12 p70, TNFα and IFNγ) and anti- (IL-4, IL-10, IL-13) inflammatory cytokines were evaluated on plasma of Frail and non-Frail subjects. We reported a significant increase in CRP, interleukin-1ß and -6 (IL-1ß, IL-6) and tumor necrosis factor alpha (TNFα) plasma levels in frailty. In female Fr subjects, we also reported an increase in interferon-gamma (IFN-γ) and, surprisingly, in IL-13, an anti-inflammatory cytokine, whose increase seems to oppose the inflammaging theory. An inflammatory panel (toll-like receptors 2 and 4 (TLR2 and TLR4), tumor necrosis factor receptors TNFRec5/CD 40 and TNFRec1B/CD120B) and a panel including receptors involved in cellular senescence (insulin-like growth factor 1 receptor (CD221) and interleukin 6 receptor (IL-6R)) were indeed analysed in plasma isolated large EVs (lEVs) from Frail (n = 20) and non-Frail (n = 20) subjects. In lEVs isolated from plasma of Frail subjects we reported an increase in TLR2 and TLR4, TNFRec5/CD 40 and TNFRec1B/CD120B, suggesting a chronic state of inflammation. In addition, CD221 and IL-6R increases in lEVs of Frail individuals. CONCLUSIONS: To conclude, the pro-inflammatory status, notably the increase in circulating cytokines is pivotal to understand the potential mechanisms underlying the frailty syndrome. Moreover, cytokines release from EVs, mainly the large ones, into the extracellular space suggest their contribution to the formation of a pro-inflammatory and pro-senescent microenvironment that, in turn, can contribute to frailty.

9.
Genomics ; 113(6): 4039-4051, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34662711

RESUMEN

The multitasking nature of lncRNAs allows them to play a central role in both physiological and pathological conditions. Often the same lncRNA can participate in different diseases. Specifically, the MYC-induced Long non-Coding RNA MINCR is upregulated in various cancer types, while downregulated in Amyotrophic Lateral Sclerosis patients. Therefore, this work aims to investigate MINCR potential mechanisms of action and its implications in cancer and neurodegeneration in relation to its expression levels in SH-SY5Y cells through RNA-sequencing approach. Our results show that MINCR overexpression causes massive alterations in cancer-related genes, leading to disruption in many fundamental processes, such as cell cycle and growth factor signaling. On the contrary, MINCR downregulation influences a small number of genes involved in different neurodegenerative disorders, mostly concerning RNA metabolism and inflammation. Thus, understanding the cause and functional consequences of MINCR deregulation gives important insights on potential pathogenetic mechanisms both in cancer and in neurodegeneration.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/genética , Oncogenes , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal
10.
Int J Mol Sci ; 23(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35628156

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease (NDD) that affects motor neurons, causing weakness, muscle atrophy and spasticity. Unfortunately, there are only symptomatic treatments available. Two important innovations in recent years are three-dimensional (3D) bioprinting and induced pluripotent stem cells (iPSCs). The aim of this work was to demonstrate the robustness of 3D cultures for the differentiation of stem cells for the study of ALS. We reprogrammed healthy and sALS peripheral blood mononuclear cells (PBMCs) in iPSCs and differentiated them in neural stem cells (NSCs) in 2D. NSCs were printed in 3D hydrogel-based constructs and subsequently differentiated first in motor neuron progenitors and finally in motor neurons. Every step of differentiation was tested for cell viability and characterized by confocal microscopy and RT-qPCR. Finally, we tested the electrophysiological characteristics of included NSC34. We found that NSCs maintained good viability during the 3D differentiation. Our results suggest that the hydrogel does not interfere with the correct differentiation process or with the electrophysiological features of the included cells. Such evidence confirmed that 3D bioprinting can be considered a good model for the study of ALS pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/patología , Humanos , Hidrogeles/farmacología , Leucocitos Mononucleares/patología
11.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269723

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by the progressive loss of lower motor neurons, weakness and muscle atrophy. ALS lacks an effective cure and diagnosis is often made by exclusion. Thus, it is imperative to search for biomarkers. Biomarkers can help in understanding ALS pathomechanisms, identification of targets for treatment and development of effective therapies. Peripheral blood mononuclear cells (PBMCs) represent a valid source for biomarkers compared to cerebrospinal fluid, as they are simple to collect, and to plasma, because of the possibility of detecting lower expressed proteins. They are a reliable model for patients' stratification. This review provides an overview on PBMCs as a potential source of biomarkers in ALS. We focused on altered RNA metabolism (coding/non-coding RNA), including RNA processing, mRNA stabilization, transport and translation regulation. We addressed protein abnormalities (aggregation, misfolding and modifications); specifically, we highlighted that SOD1 appears to be the most characterizing protein in ALS. Finally, we emphasized the correlation between biological parameters and disease phenotypes, as regards prognosis, severity and clinical features. In conclusion, even though further studies are needed to standardize the use of PBMCs as a tool for biomarker investigation, they represent a promising approach in ALS research.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Biomarcadores/metabolismo , Humanos , Leucocitos Mononucleares/metabolismo , Neuronas Motoras/metabolismo , Enfermedades Neurodegenerativas/metabolismo
12.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36430958

RESUMEN

Aicardi-Goutières syndrome (AGS) is a rare encephalopathy characterized by neurological and immunological features. Mitochondrial dysfunctions may lead to mitochondrial DNA (mtDNA) release and consequent immune system activation. We investigated the role of mitochondria and mtDNA in AGS pathogenesis by studying patients mutated in RNASEH2B and RNASEH2A genes. Lymphoblastoid cell lines (LCLs) from RNASEH2A- and RNASEH2B-mutated patients and healthy control were used. Transmission Electron Microscopy (TEM) and flow cytometry were used to assess morphological alterations, reactive oxygen species (ROS) production and mitochondrial membrane potential variations. Seahorse Analyzer was used to investigate metabolic alterations, and mtDNA oxidation and VDAC1 oligomerization were assessed by immunofluorescence. Western blot and RT-qPCR were used to quantify mtTFA protein and mtDNA release. Morphological alterations of mitochondria were observed in both mutated LCLs, and loss of physiological membrane potential was mainly identified in RNASEH2A LCLs. ROS production and 8-oxoGuanine levels were increased in RNASEH2B LCLs. Additionally, the VDAC1 signal was increased, suggesting a mitochondrial pore formation possibly determining mtDNA release. Indeed, higher cytoplasmic mtDNA levels were found in RNASEH2B LCLs. Metabolic alterations confirmed mitochondrial damage in both LCLs. Data highlighted mitochondrial alterations in AGS patients' LCLs suggesting a pivotal role in AGS pathogenesis.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Malformaciones del Sistema Nervioso , Humanos , Especies Reactivas de Oxígeno/metabolismo , Malformaciones del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo
13.
Neurobiol Dis ; 148: 105211, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271327

RESUMEN

The neuronal RNA-binding protein (RBP) HuD plays an important role in brain development, synaptic plasticity and neurodegenerative diseases such as Parkinson's (PD) and Alzheimer's (AD). Bioinformatics analysis of the human SOD1 mRNA 3' untranslated region (3'UTR) demonstrated the presence of HuD binding adenine-uridine (AU)-rich instability-conferring elements (AREs). Using differentiated SH-SY5Y cells along with brain tissues from sporadic amyotrophic lateral sclerosis (sALS) patients, we assessed HuD-dependent regulation of SOD1 mRNA. In vitro binding and mRNA decay assays demonstrate that HuD specifically binds to SOD1 ARE motifs promoting mRNA stabilization. In SH-SY5Y cells, overexpression of full-length HuD increased SOD1 mRNA and protein levels while a dominant negative form of the RBP downregulated its expression. HuD regulation of SOD1 mRNA was also found to be oxidative stress (OS)-dependent, as shown by the increased HuD binding and upregulation of this mRNA after H2O2 exposure. This treatment also induced a shift in alternative polyadenylation (APA) site usage in SOD1 3'UTR, increasing the levels of a long variant bearing HuD binding sites. The requirement of HuD for SOD1 upregulation during oxidative damage was validated using a specific siRNA that downregulated HuD protein levels to 36% and prevented upregulation of SOD1 and 91 additional genes. In the motor cortex from sALS patients, we found increases in SOD1 and HuD mRNAs and proteins, accompanied by greater HuD binding to this mRNA as confirmed by RNA-immunoprecipitation (RIP) assays. Altogether, our results suggest a role of HuD in the post-transcriptional regulation of SOD1 expression during ALS pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína 4 Similar a ELAV/genética , Regulación de la Expresión Génica/genética , Corteza Motora/metabolismo , Neuroblastoma/metabolismo , Neuronas/metabolismo , Estrés Oxidativo/genética , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral/metabolismo , Línea Celular Tumoral , Proteína 4 Similar a ELAV/metabolismo , Humanos , ARN Mensajero/metabolismo , Superóxido Dismutasa-1/metabolismo
14.
Brain Behav Immun ; 97: 13-21, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34022369

RESUMEN

SARS-Cov-2 infection is frequently associated with Nervous System manifestations. However, it is not clear how SARS-CoV-2 can cause neurological dysfunctions and which molecular processes are affected in the brain. In this work, we examined the frontal cortex tissue of patients who died of COVID-19 for the presence of SARS-CoV-2, comparing qRT-PCR with ddPCR. We also investigated the transcriptomic profile of frontal cortex from COVID-19 patients and matched controls by RNA-seq analysis to characterize the transcriptional signature. Our data showed that SARS-CoV-2 could be detected by ddPCR in 8 (88%) of 9 examined samples while by qRT-PCR in one case only (11%). Transcriptomic analysis revealed that 11 genes (10 mRNAs and 1 lncRNA) were differential expressed when frontal cortex of COVID-19 patients were compared to controls. These genes fall into categories including hypoxia, hemoglobin-stabilizing protein, hydrogen peroxide processes. This work demonstrated that the quantity of viral RNA in frontal cortex is minimal and it can be detected only with a very sensitive method (ddPCR). Thus, it is likely that SARS-CoV-2 does not actively infect and replicate in the brain; its topography within encephalic structures remains uncertain. Moreover, COVID-19 may have a role on brain gene expression, since we observed an important downregulation of genes associated to hypoxia inducting factor system (HIF) that may inhibit the capacity of defense system during infection and oxigen deprivation, showing that hypoxia, well known multi organ condition associated to COVID-19, also marked the brain.


Asunto(s)
COVID-19 , SARS-CoV-2 , Lóbulo Frontal , Humanos , Transcriptoma , Secuenciación del Exoma
15.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33918046

RESUMEN

Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder caused by the deposition of amyloid beta-peptide (Aß) aggregates. Aß aggregates lead to vessel rupture and intracerebral hemorrhages, detected by magnetic resonance imaging (MRI). Presenile CAA is usually genetically determined by mutations in the amyloid precursor protein (APP) gene. However, mutations after codon 200 in the presenilin 1 (PSEN1) gene have been reported to facilitate CAA onset. Here, we analyzed the genetic bases in a patient of 55 years old affected by CAA and cognitive decline. DNA was isolated and genetic analysis was performed by Next-Generation Sequencing (NGS). RNA was extracted and retro-transcribed to perform segregation analysis by TOPO-TA cloning. WB analysis was carried out to check the impact of the mutations on protein. Two compound heterozygous mutations in PSEN1 exon 10, such as a novel stop-gain mutation (c.1070C > G) and a pathogenic splice variant (c.1129A > T), were found by NGS. Both mutations altered the presenilin 1 protein, truncating its C-terminal portion. This is the first case of CAA and cognitive decline caused by two compound mutations in PSEN1. With this report, we suggest extending the genetic analysis to PSEN1 when cerebral microbleeds are observed by MRI investigation in a patient affected by presenile cognitive decline.


Asunto(s)
Angiopatía Amiloide Cerebral/diagnóstico , Angiopatía Amiloide Cerebral/genética , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/genética , Mutación , Presenilina-1/genética , Alelos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Análisis Mutacional de ADN , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Modelos Moleculares , Fenotipo , Presenilina-1/química , Conformación Proteica
16.
Int J Mol Sci ; 22(5)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800495

RESUMEN

Identifying biomarkers is essential for early diagnosis of neurodegenerative diseases (NDs). Large (LEVs) and small extracellular vesicles (SEVs) are extracellular vesicles (EVs) of different sizes and biological functions transported in blood and they may be valid biomarkers for NDs. The aim of our study was to investigate common and different miRNA signatures in plasma derived LEVs and SEVs of Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and Fronto-Temporal Dementia (FTD) patients. LEVs and SEVs were isolated from plasma of patients and healthy volunteers (CTR) by filtration and differential centrifugation and RNA was extracted. Small RNAs libraries were carried out by Next Generation Sequencing (NGS). MiRNAs discriminate all NDs diseases from CTRs and they can provide a signature for each NDs. Common enriched pathways for SEVs were instead linked to ubiquitin mediated proteolysis and Toll-like receptor signaling pathways and for LEVs to neurotrophin signaling and Glycosphingolipid biosynthesis pathway. LEVs and SEVs are involved in different pathways and this might give a specificity to their role in the spreading of the disease. The study of common and different miRNAs transported by LEVs and SEVs can be of great interest for biomarker discovery and for pathogenesis studies in neurodegeneration.


Asunto(s)
MicroARN Circulante/sangre , Vesículas Extracelulares/metabolismo , Perfilación de la Expresión Génica , Enfermedades Neurodegenerativas/sangre , Transducción de Señal , Anciano , Anciano de 80 o más Años , MicroARN Circulante/genética , Vesículas Extracelulares/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Neurodegenerativas/genética
17.
Nanomedicine ; 29: 102249, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32599162

RESUMEN

Sporadic amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease for which there is no validated blood based biomarker. Extracellular vesicles (EVs) have the potential to solve this unmet clinical need. However, due to their heterogeneity and complex chemical composition, EVs are difficult to study. Raman spectroscopy (RS) is an optical method that seems particularly well suited to address this task. In fact, RS provides an overview of the biochemical composition of EVs quickly and virtually without any sample preparation. In this work, we studied by RS small extracellular vesicles (sEVs), large extracellular vesicles (lEVs) and blood plasma of sporadic ALS patients and of a matched cohort of healthy controls. The obtained results highlighted lEVs as a particularly promising biomarker for ALS. In fact, their Raman spectra show that sporadic ALS patients have a different lipid content and less intense bands relative to the aromatic amino acid phenylalanine.


Asunto(s)
Esclerosis Amiotrófica Lateral/sangre , Biomarcadores/sangre , Vesículas Extracelulares/genética , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Espectrometría Raman
18.
Int J Mol Sci ; 21(9)2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32375302

RESUMEN

Neurodegenerative disorders (i.e., Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and spinal cord injury) represent a great problem worldwide and are becoming prevalent because of the increasing average age of the population. Despite many studies having focused on their etiopathology, the exact cause of these diseases is still unknown and until now, there are only symptomatic treatments. Biomaterials have become important not only for the study of disease pathogenesis, but also for their application in regenerative medicine. The great advantages provided by biomaterials are their ability to mimic the environment of the extracellular matrix and to allow the growth of different types of cells. Biomaterials can be used as supporting material for cell proliferation to be transplanted and as vectors to deliver many active molecules for the treatments of neurodegenerative disorders. In this review, we aim to report the potentiality of biomaterials (i.e., hydrogels, nanoparticles, self-assembling peptides, nanofibers and carbon-based nanomaterials) by analyzing their use in the regeneration of neural and glial cells their role in axon outgrowth. Although further studies are needed for their use in humans, the promising results obtained by several groups leads us to suppose that biomaterials represent a potential therapeutic approach for the treatments of neurodegenerative disorders.


Asunto(s)
Materiales Biocompatibles , Enfermedades Neurodegenerativas/terapia , Medicina Regenerativa , Animales , Materiales Biocompatibles/química , Humanos , Nanoestructuras , Nanotecnología/métodos , Regeneración Nerviosa , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Nanomedicina Teranóstica
19.
Int J Mol Sci ; 21(18)2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942778

RESUMEN

3D cell cultures are becoming more and more important in the field of regenerative medicine due to their ability to mimic the cellular physiological microenvironment. Among the different types of 3D scaffolds, we focus on the Nichoid, a miniaturized scaffold with a structure inspired by the natural staminal niche. The Nichoid can activate cellular responses simply by subjecting the cells to mechanical stimuli. This kind of influence results in different cellular morphology and organization, but the molecular bases of these changes remain largely unknown. Through RNA-Seq approach on murine neural precursors stem cells expanded inside the Nichoid, we investigated the deregulated genes and pathways showing that the Nichoid causes alteration in genes strongly connected to mechanobiological functions. Moreover, we fully dissected this mechanism highlighting how the changes start at a membrane level, with subsequent alterations in the cytoskeleton, signaling pathways, and metabolism, all leading to a final alteration in gene expression. The results shown here demonstrate that the Nichoid influences the biological and genetic response of stem cells thorough specific alterations of cellular signaling. The characterization of these pathways elucidates the role of mechanical manipulation on stem cells, with possible implications in regenerative medicine applications.


Asunto(s)
Mecanotransducción Celular/genética , Células-Madre Neurales/metabolismo , Transcriptoma/genética , Animales , Técnicas de Cultivo de Célula , Células Cultivadas , Citoesqueleto/genética , Expresión Génica/genética , Ratones , Ratones Endogámicos C57BL , Medicina Regenerativa/métodos , Transducción de Señal/genética , Nicho de Células Madre/genética , Andamios del Tejido/química
20.
Int J Mol Sci ; 21(24)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327559

RESUMEN

Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by a progressive degeneration of the central or peripheral nervous systems. A central role of the RNA metabolism has emerged in these diseases, concerning mRNAs processing and non-coding RNAs biogenesis. We aimed to identify possible common grounds or differences in the dysregulated pathways of AD, PD, and ALS. To do so, we performed RNA-seq analysis to investigate the deregulation of both coding and long non-coding RNAs (lncRNAs) in ALS, AD, and PD patients and controls (CTRL) in peripheral blood mononuclear cells (PBMCs). A total of 293 differentially expressed (DE) lncRNAs and 87 mRNAs were found in ALS patients. In AD patients a total of 23 DE genes emerged, 19 protein coding genes and four lncRNAs. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses, we found common affected pathways and biological processes in ALS and AD. In PD patients only five genes were found to be DE. Our data brought to light the importance of lncRNAs and mRNAs regulation in three principal neurodegenerative disorders, offering starting points for new investigations on deregulated pathogenic mechanisms.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Alzheimer/genética , Esclerosis Amiotrófica Lateral/genética , Humanos , Enfermedad de Parkinson/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , RNA-Seq
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA