Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Cancer ; 153(6): 1257-1272, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37323038

RESUMEN

Adiponectin is the major adipocytes-secreted protein involved in obesity-related breast cancer growth and progression. We proved that adiponectin promotes proliferation in ERα-positive breast cancer cells, through ERα transactivation and the recruitment of LKB1 as ERα-coactivator. Here, we showed that adiponectin-mediated ERα transactivation enhances E-cadherin expression. Thus, we investigated the molecular mechanism through which ERα/LKB1 complex may modulate the expression of E-cadherin, influencing tumor growth, progression and distant metastasis. We demonstrated that adiponectin increases E-cadherin expression in ERα-positive 2D and higher extent in 3D cultures. This occurs through a direct activation of E-cadherin gene promoter by ERα/LKB1-complex. The impact of E-cadherin on ERα-positive breast cancer cell proliferation comes from the evidence that in the presence of E-cadherin siRNA the proliferative effects of adiponectin is no longer noticeable. Since E-cadherin connects cell polarity and growth, we investigated if the adiponectin-enhanced E-cadherin expression could influence the localization of proteins cooperating in cell polarity, such as LKB1 and Cdc42. Surprisingly, immunofluorescence showed that, in adiponectin-treated MCF-7 cells, LKB1 and Cdc42 mostly colocalize in the nucleus, impairing their cytosolic cooperation in maintaining cell polarity. The orthotopic implantation of MCF-7 cells revealed an enhanced E-cadherin-mediated breast cancer growth induced by adiponectin. Moreover, tail vein injection of MCF-7 cells showed a higher metastatic burden in the lungs of mice receiving adiponectin-treated cells compared to control. From these findings it emerges that adiponectin treatment enhances E-cadherin expression, alters cell polarity and stimulates ERα-positive breast cancer cell growth in vitro and in vivo, sustaining higher distant metastatic burden.


Asunto(s)
Adiponectina , Neoplasias , Humanos , Animales , Ratones , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Línea Celular Tumoral , Células MCF-7 , Cadherinas/genética
2.
J Transl Med ; 21(1): 232, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37004031

RESUMEN

BACKGROUND: The incidence of obesity, a known risk factor for several metabolic and chronic diseases, including numerous malignancies, has risen sharply in the world. Various clinical studies demonstrate that excessive Body Mass Index (BMI) may worsen the incidence, prognosis, and mortality rates of breast cancer. Thus, understanding the link tying up obesity and breast cancer onset and progression is critically important, as it can impact patients' survival and quality of life. Recently, circulating extracellular vesicle (EV) derived miRNAs have attracted much attention for their diagnostic, prognostic and therapeutic potential in oncology research. Although the potential role of EV-derived miRNAs in the early detection of breast cancer has been repeatedly mentioned, screening of miRNAs packaged within serum EVs has not yet been reported in patients with obesity. METHODS: Circulating EVs were isolated from normal weight (NW), and overweight/obese (OW/Ob) breast cancer patients and characterized by Transmission Electron Microscopy (TEM), Nanoparticle Tracking Analysis (NTA), and protein marker expression. Evaluation of EV-associated miRNAs was conducted in a screening (RNA-seq) and a validation (qRT-PCR) cohort. Bioinformatic analysis was performed to uncover significantly enriched biological processes, molecular functions and pathways. ROC and Kaplain-Meier survival analyses were used for clinical significance. RESULTS: Comparison of serum EV-derived miRNAs from NW and OW/Ob patients detected seven differentially expressed miRNAs (let-7a-5p, miR-122-5p, miR-30d-5p, miR-126-3p, miR-27b-3p, miR-4772-3p, and miR-10a-5p) in the screening cohort. GO analysis revealed the enrichment of protein phosphorylation, intracellular signal transduction, signal transduction, and vesicle-mediated transport among the top biological processes. In addition, the target genes were significantly enriched in pathways related to PI3K/Akt, growth hormones, and insulin signalings, which are all involved in obesity-related diseases and/or breast cancer progression. In the validation cohort, qRT-PCR confirmed a significant down-regulation of EV-derived let-7a in the serum of OW/Ob breast cancer patients compared to NW patients. Let-7a levels also exhibited a negative correlation with BMI values. Importantly, decreased let-7a miRNA expression was associated with higher tumor grade and poor survival in patients with breast cancer. CONCLUSION: These results suggest that serum-EV derived miRNAs may reflect a differential profile in relation to a patient's BMI, which, once validated in larger cohorts of patients, could provide insights into novel specific biomarkers and innovative targets to prevent the progression of obesity-mediated breast cancer.


Asunto(s)
Neoplasias de la Mama , MicroARN Circulante , Vesículas Extracelulares , MicroARNs , Humanos , Femenino , MicroARN Circulante/metabolismo , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Calidad de Vida , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Obesidad/complicaciones , Obesidad/genética , Obesidad/metabolismo
3.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361728

RESUMEN

Tumor extracellular vesicles (EVs), as endocytic vesicles able to transport nucleic acids, proteins, and metabolites in recipient cells, have been recognized fundamental mediators of cell-to-cell communication in breast cancer. The biogenesis and release of EVs are highly regulated processes and both the quantity of EVs and their molecular cargo might reflect the metabolic state of the producing cells. We recently demonstrated that the adipokine leptin, whose circulating levels correlate with adipose tissue expansion, is an inducer of EV release from breast cancer cells. Here, we show a specific proteomic signature of EVs released by MCF-7 breast cancer cells grown in the presence of leptin (Lep-EVs), in attempt to find additional molecular effectors linking obesity to breast cancer biology. An analysis of the proteomic profile of Lep-EVs by LC-MS/MS revealed a significant enrichment in biological processes, molecular functions, and cellular components mainly related to mitochondrial machineries and activity, compared to protein content of EVs from untreated breast cancer cells. Metabolic investigations, carried out to assess the autocrine effects of these vesicles on breast cancer cells, revealed that Lep-EVs were able to increase ATP levels in breast cancer cells. This result is associated with increased mitochondrial respiration evaluated by Seahorse analyzer, supporting the concept that Lep-EVs can modulate MCF-7 breast cancer cell oxidative metabolism. Moreover, taking into account the relevance of tumor immune cell crosstalk in the tumor microenvironment (TME), we analyzed the impact of these vesicles on macrophage polarization, the most abundant immune component in the breast TME. We found that tumor-derived Lep-EVs sustain the polarization of M0 macrophages, derived from the human THP-1 monocytic cells, into M2-like tumor-associated macrophages, in terms of metabolic features, phagocytic activity, and increased expression of CD206-positive population. Overall, our results indicate that leptin by inducing the release of EV-enriched in mitochondrial proteins may control the metabolism of MCF-7 breast cancer cells as well as that of macrophages. Characterization of tumor-derived EV protein cargo in an obesity-associated milieu, such as in the presence of elevated leptin levels, might allow identifying unique features and specific metabolic mechanisms useful to develop novel therapeutic approaches for treatment of breast cancer, especially in obese patients.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , Humanos , Femenino , Proteómica , Neoplasias de la Mama/metabolismo , Leptina/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Vesículas Extracelulares/metabolismo , Obesidad/metabolismo , Microambiente Tumoral
4.
Am J Pathol ; 189(3): 687-698, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30610844

RESUMEN

Although in past decades the adipokine leptin and its own receptor have been considered as significant cancer biomarkers, their potential involvement in human testicular seminoma growth and progression remains unexplored. Here, we showed that the expression of leptin and its receptor was significantly higher in human testicular seminoma compared with normal adult testis. Human seminoma cell line TCam-2 also expressed leptin along with the long and short isoforms of leptin receptor, and in response to leptin treatment showed enhanced activation of its downstream effectors. In line with these results, leptin stimulation significantly increased the proliferation and migration of TCam-2 cells. Treatment of TCam-2 cells with the peptide Leu-Asp-Phe-Ile (LDFI), a full leptin-receptor antagonist, completely reversed the leptin-mediated effects on cell growth and motility as well as reduced the expression of several leptin-induced target genes. More importantly, the in vivo xenograft experiments showed that LDFI treatment markedly decreased seminoma tumor growth. Interestingly, LDFI-treated tumors showed reduced levels of the proliferation marker Ki-67 as well as decreased expression of leptin-regulated genes. Taken together, these data identify, for the first time, leptin as a key factor able to affect testicular seminoma behavior, highlighting leptin receptor as a potential target for novel potential treatments in this type of cancer.


Asunto(s)
Leptina/farmacocinética , Proteínas de Neoplasias/agonistas , Péptidos/farmacología , Receptores de Leptina/agonistas , Seminoma/tratamiento farmacológico , Neoplasias Testiculares/tratamiento farmacológico , Adulto , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Leptina/química , Masculino , Ratones , Ratones Desnudos , Proteínas de Neoplasias/metabolismo , Péptidos/química , Receptores de Leptina/metabolismo , Seminoma/metabolismo , Seminoma/patología , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Int J Mol Sci ; 21(16)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823947

RESUMEN

Aromatase inhibitors (AIs) represent the standard anti-hormonal therapy for post-menopausal estrogen receptor-positive breast cancer, but their efficacy is limited by the emergence of AI resistance (AIR). Exosomes act as vehicles to engender cancer progression and drug resistance. The goal of this work was to study exosome contribution in AIR mechanisms, using estrogen-dependent MCF-7 breast cancer cells as models and MCF-7 LTED (Long-Term Estrogen Deprived) subline, modeling AIR. We found that exosome secretion was significantly increased in MCF-7 LTED cells compared to MCF-7 cells. MCF-7 LTED cells also exhibited a higher amount of exosomal RNA and proteins than MCF-7 cells. Proteomic analysis revealed significant alterations in the cellular proteome. Indeed, we showed an enrichment of proteins frequently identified in exosomes in MCF-7 LTED cells. The most up-regulated proteins in MCF-7 LTED cells were represented by Rab GTPases, important vesicle transport-regulators in cancer, that are significantly mapped in "small GTPase-mediated signal transduction", "protein transport" and "vesicle-mediated transport" Gene Ontology categories. Expression of selected Rab GTPases was validated by immunoblotting. Collectively, we evidence, for the first time, that AIR breast cancer cells display an increased capability to release exosomes, which may be associated with an enhanced Rab GTPase expression. These data provide the rationale for further studies directed at clarifying exosome's role on endocrine therapy, with the aim to offer relevant markers and druggable therapeutic targets for the management of hormone-resistant breast cancers.


Asunto(s)
Inhibidores de la Aromatasa/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos , Exosomas/metabolismo , Inhibidores de la Aromatasa/farmacología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Análisis por Conglomerados , Resistencia a Antineoplásicos/efectos de los fármacos , Estrógenos/deficiencia , Exosomas/ultraestructura , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Proteómica , Regulación hacia Arriba/efectos de los fármacos , Proteínas de Unión al GTP rab/metabolismo
6.
Am J Pathol ; 186(5): 1328-39, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26968343

RESUMEN

Leydig cell tumors are the most frequent interstitial neoplasms of the testis with increased incidence in recent years. They are hormonally active and are considered one of the steroid-secreting tumors. Although usually benign, the malignant phenotype responds poorly to conventional chemotherapy or radiation, highlighting the need to identify new therapeutic targets for treatment. Here, we identified a novel glucocorticoid-mediated mechanism that controls cell growth in Leydig cell tumors. We found that a synthetic glucocorticoid receptor agonist, dexamethasone, reduces cell proliferation in rat Leydig tumor cells by decreasing the expression and the enzymatic activity of the estrogen-producing enzyme aromatase. This inhibitory effect relies on the ability of activated glucocorticoid receptor to regulate the aromatase gene transcriptional activity through the recruitment of nuclear receptor corepressor protein and silencing mediator of retinoid and thyroid hormone receptors to a newly identified putative glucocorticoid responsive element within the aromatase promoter II. Our in vivo studies reveal a reduction of tumor growth, after dexamethasone treatment, in animal xenografts. Tumors from dexamethasone-treated mice exhibit a decrease in the expression of the proliferation marker Ki-67 and the aromatase enzyme. Our data demonstrate that activated glucocorticoid receptor, decreasing aromatase expression, induces Leydig tumor regression both in vitro and in vivo, suggesting that glucocorticoid receptor might be a potential target for the therapy of Leydig cell tumors.


Asunto(s)
Inhibidores de la Aromatasa/farmacología , Aromatasa/metabolismo , Dexametasona/farmacología , Tumor de Células de Leydig/patología , Receptores de Glucocorticoides/antagonistas & inhibidores , Neoplasias Testiculares/patología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Xenoinjertos , Tumor de Células de Leydig/tratamiento farmacológico , Masculino , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias Testiculares/tratamiento farmacológico
7.
Tumour Biol ; 39(5): 1010428317701642, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28459202

RESUMEN

Human testis, gonocytes, and adult germ cells mainly express estrogen receptor beta, and estrogen receptor beta loss is associated with advanced tumor stage; however, the molecular mechanisms of estrogen receptor beta-protective effects are still to be defined. Herein, we provide evidence that in human seminoma TCam-2 cells, E2 through estrogen receptor beta upregulates the mitochondrial deacetylase sirtuin-3 at protein and messenger RNA levels. Specifically, E2 increases sirtuin-3 expression through a transcriptional mechanism due to the occupancy of sirtuin-3 promoter by estrogen receptor beta, together with the transcription factor Sp1 as evidenced by Chip reChIp assay. This complex binds to a GC cluster located between -128 bp/+1 bp and is fundamental for E2 effects, as demonstrated by Sp1 small interfering RNA studies. Beside, after 24 h, E2 stimulus significantly increased activities of superoxide dismutase and catalase to scavenge reactive oxygen species produced by 30 min of E2 stimulus. In summary, this article indicates a novel functional interplay between estrogen receptor beta and sirtuin-3 counteracting reactive oxygen species production in TCam-2 cells. Our findings thus show that an important tumor-suppressive pathway through estrogen receptor beta is target of E2, actually proposing a distinctive protecting action against seminoma. Future studies may lead to additional strategies for the current therapy of seminoma.


Asunto(s)
Estradiol/administración & dosificación , Receptor beta de Estrógeno/genética , Seminoma/tratamiento farmacológico , Sirtuina 3/genética , Sitios de Unión , Línea Celular Tumoral , Estradiol/metabolismo , Receptor beta de Estrógeno/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Regiones Promotoras Genéticas/genética , Unión Proteica , Especies Reactivas de Oxígeno/metabolismo , Seminoma/genética , Seminoma/metabolismo , Seminoma/patología , Sirtuina 3/metabolismo , Factor de Transcripción Sp1/metabolismo , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética
8.
Bioorg Med Chem Lett ; 27(14): 3092-3095, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28549734

RESUMEN

In this study, we investigate the anti-proliferative activity of a small library of 7-substituted 5H-pyrrolo[1,2-a][3,1]benzoxazin-5-one derivatives, against a panel of human cancer cell lines. We reported the synthesis of these compounds in a previous work. 7-Bromo-5H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-5-one showed a promising anti-proliferative effect. As starting material for Suzuki-Miyaura cross coupling reaction, it was selected for the design and the synthesis of six further derivatives, with the aim to better define structure-activity relationships. The anti-proliferative MTT assay revealed a dose-dependent reduction of cell viability, especially for 7-([1,1'-biphenyl]-4-yl)-5H-benzo[d]pyrrolo[2,1-b][1,3]oxazin-5-one. Cell cycle and western blotting analysis suggested apoptosis as possible mechanism for its anti-proliferative activity. These preliminary results encourage our interest for further optimizations.


Asunto(s)
Antineoplásicos/síntesis química , Benzoxazinas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Antineoplásicos/farmacología , Benzoxazinas/síntesis química , Benzoxazinas/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Pirroles/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad
9.
J Cell Mol Med ; 19(5): 1122-32, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25721149

RESUMEN

The role of the obesity cytokine leptin in breast cancer progression has raised interest in interfering with leptin's actions as a valuable therapeutic strategy. Leptin interacts with its receptor through three different binding sites: I-III. Site I is crucial for the formation of an active leptin-leptin receptor complex and in its subsequent activation. Amino acids 39-42 (Leu-Asp-Phe-Ile- LDFI) were shown to contribute to leptin binding site I and their mutations in alanine resulted in muteins acting as typical antagonists. We synthesized a small peptide based on the wild-type sequence of leptin binding site I (LDFI) and evaluated its efficacy in antagonizing leptin actions in breast cancer using in vitro and in vivo experimental models. The peptide LDFI abolished the leptin-induced anchorage-dependent and -independent growth as well as the migration of ERα-positive (MCF-7) and -negative (SKBR3) breast cancer cells. These results were well correlated with a reduction in the phosphorylation levels of leptin downstream effectors, as JAK2/STAT3/AKT/MAPK. Importantly, the peptide LDFI reversed the leptin-mediated up-regulation of its gene expression, as an additional mechanism able to enhance the peptide antagonistic activity. The described effects were specific for leptin signalling, since the developed peptide was not able to antagonize the other growth factors' actions on signalling activation, proliferation and migration. Finally, we showed that the LDFI pegylated peptide markedly reduced breast tumour growth in xenograft models. The unmodified peptide LDFI acting as a full leptin antagonist could become an attractive option for breast cancer treatment, especially in obese women.


Asunto(s)
Neoplasias de la Mama/prevención & control , Proliferación Celular/efectos de los fármacos , Leptina/antagonistas & inhibidores , Oligopéptidos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Secuencia de Aminoácidos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Immunoblotting , Leptina/genética , Leptina/metabolismo , Células MCF-7 , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oligopéptidos/química , Fosforilación/efectos de los fármacos , Polietilenglicoles/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Leptina/antagonistas & inhibidores , Receptores de Leptina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción STAT3/metabolismo , Carga Tumoral/efectos de los fármacos
10.
J Cell Mol Med ; 18(11): 2252-65, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25216078

RESUMEN

The tumour suppressor activity of the phosphatase and tensin homologue on chromosome 10 (PTEN) is subject of intense investigative efforts, although limited information on its regulation in breast cancer is available. Herein, we report that, in breast cancer cells, progesterone (OHPg), through its cognate receptor PR-B, positively modulates PTEN expression by inducing its mRNA and protein levels, and increasing PTEN-promoter activity. The OHPg-dependent up-regulation of PTEN gene activity requires binding of the PR-B to an Sp1-rich region within the PTEN gene promoter. Indeed, ChIP and EMSA analyses showed that OHPg treatment induced the occupancy of PTEN promoter by PR and Sp1 together with transcriptional coactivators such as SRC1 and CBP. PR-B isoform knockdown abolished the complex formation indicating its specific involvement. The OHPg/PR-B dependent induction of PTEN causes the down-regulation of PI3K/AKT signal, switching on the autophagy process through an enhanced expression of UVRAG and leading to a reduced cell survival. Altogether these findings highlight a novel functional connection between OHPg/PR-B and tumour suppressor pathways in breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Proteína Oncogénica v-akt/genética , Fosfohidrolasa PTEN/biosíntesis , Progesterona/genética , Receptores de Progesterona/biosíntesis , Autofagia/genética , Neoplasias de la Mama/patología , Supervivencia Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Progesterona/metabolismo , Transducción de Señal/genética
11.
Biochim Biophys Acta ; 1831(6): 1027-36, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23370576

RESUMEN

The citrate carrier (CIC), a nuclear-encoded protein located in the mitochondrial inner membrane, plays an important metabolic role in the transport of acetyl-CoA from the mitochondrion to the cytosol in the form of citrate for fatty acid and cholesterol synthesis. Citrate has been reported to be essential for fibroblast differentiation into fat cells. Because peroxisome proliferator-activated receptor-gamma (PPARγ) is known to be one of the master regulators of adipogenesis, we aimed to study the regulation of CIC by the PPARγ ligand rosiglitazone (BRL) in 3T3-L1 fibroblasts and in adipocytes. We demonstrated that BRL up-regulated CIC mRNA and protein levels in fibroblasts, while it did not elicit any effects in mature adipocytes. The enhancement of CIC levels upon BRL treatment was reversed using the PPARγ antagonist GW9662, addressing how this effect was mediated by PPARγ. Functional experiments using a reporter gene containing rat CIC promoter showed that BRL enhanced CIC promoter activity. Mutagenesis studies, electrophoretic-mobility-shift assay and chromatin-immunoprecipitation analysis revealed that upon BRL treatment, PPARγ and Sp1 are recruited on the Sp1-containing region within the CIC promoter, leading to an increase in CIC expression. In addition, mithramycin, a specific inhibitor for Sp1-DNA binding activity, abolished the PPARγ-mediated up-regulation of CIC in fibroblasts. The stimulatory effects of BRL disappeared in mature adipocytes in which PPARγ/Sp1 complex recruited SMRT corepressor to the Sp1 site of the CIC promoter. Taken together, our results contribute to clarify the molecular mechanisms by which PPARγ regulates CIC expression during the differentiation stages of fibroblasts into mature adipocytes.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis/fisiología , Fibroblastos/metabolismo , Mitocondrias/metabolismo , PPAR gamma/metabolismo , Proteínas Represoras/genética , Células 3T3-L1 , Adipocitos/citología , Adipocitos/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Hipoglucemiantes/farmacología , Luciferasas/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Co-Represor 2 de Receptor Nuclear/antagonistas & inhibidores , Co-Represor 2 de Receptor Nuclear/genética , Co-Represor 2 de Receptor Nuclear/metabolismo , PPAR gamma/genética , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rosiglitazona , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Tiazolidinedionas/farmacología , Activación Transcripcional , Regulación hacia Arriba
12.
Breast Cancer Res Treat ; 146(2): 273-85, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24928526

RESUMEN

Tamoxifen resistance is a major clinical challenge in breast cancer treatment. Aromatase inhibitors are effective in women who progressed or recurred on tamoxifen, suggesting a role of local estrogen production by aromatase in driving tamoxifen-resistant phenotype. However, the link between aromatase activity and tamoxifen resistance has not yet been reported. We investigated whether long-term tamoxifen exposure may affect aromatase activity and/or expression, which may then sustain tamoxifen-resistant breast cancer cell growth. We employed MCF-7 breast cancer cells, tamoxifen-resistant MCF-7 cells (MCF-7 TR1 and TR2), SKBR-3 breast cancer cells, cancer-associated fibroblasts (CAFs1 and CAFs2). We used tritiated-water release assay, realtime-RT-PCR, and immunoblotting analysis for evaluating aromatase activity and expression; anchorage-independent assays for growth; reporter-gene, electrophoretic-mobility-shift, and chromatin-immunoprecipitation assays for promoter activity studies. We demonstrated an increased aromatase activity and expression, which supports proliferation in tamoxifen-resistant breast cancer cells. This is mediated by the G-protein-coupled receptor GPR30/GPER, since knocking-down GPER expression or treatment with a GPER antagonist reversed the enhanced aromatase levels induced by long-term tamoxifen exposure. The molecular mechanism was investigated in ER-negative, GPER/aromatase-positive SKBR3 cells, in which tamoxifen acts as a GPER agonist. Tamoxifen treatment increased aromatase promoter activity through an enhanced recruitment of c-fos/c-jun complex to AP-1 responsive elements located within the promoter region. As tamoxifen via GPER induced aromatase expression also in CAFs, this pathway may be involved in promoting aggressive behavior of breast tumors in response to tamoxifen treatment. Blocking estrogen production and/or GPER signaling activation may represent a valid option to overcome tamoxifen-resistance in breast cancers.


Asunto(s)
Antineoplásicos Hormonales/farmacología , Aromatasa/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Tamoxifeno/farmacología , Aromatasa/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos , Activación Enzimática/efectos de los fármacos , Femenino , Expresión Génica , Humanos , Células MCF-7 , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factor de Transcripción AP-1/metabolismo , Activación Transcripcional
13.
Reproduction ; 147(5): 589-98, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24429393

RESUMEN

The study of androgens involved in male reproduction has been object of intense efforts, while their reported action on human male gametes is limited. We previously described the presence of androgen receptor (AR) in sperm with a role related to the modulation of the PI3K pathway. In the present study, we investigated the expression of AR and its ultrastructural location in normal sperm as well as in spermatozoa obtained from varicocele patients. We observed a reduced AR content in varicocele sperm with respect to healthy sperm by western blot analysis and transmission electron microscopy (TEM). The ultrastructural location of AR was detected mainly on the head membrane as well as in the nucleus, neck, and mitochondria. Influence of dihydrotestosterone (DHT) treatment on cholesterol efflux was increased in normal sperm, while it was reduced or absent in varicocele sperm. To better understand DHT/AR significance in human male gametes, we evaluated triglyceride content and lipase, acyl-CoA dehydrogenase, and glucose-6-phosphate dehydrogenase activities upon DHT treatment. The metabolic outcome glimpsed in normal sperm was an increased metabolic rate, while 'varicocele' sperm economized energy. Taken together, our results reveal DHT and AR as new players in sperm endocrinology, indicating that varicocele sperm may have difficulty in switching to the capacitated status. A decreased AR expression and a consequent reduced responsiveness to DHT in sperm may represent molecular mechanisms involved in the pathophysiology of varicocele leading to male infertility. This study revealed new detrimental effects of varicocele on sperm at the molecular level.


Asunto(s)
Receptores Androgénicos/fisiología , Espermatozoides/patología , Varicocele/patología , Varicocele/fisiopatología , Células Cultivadas , Dihidrotestosterona/farmacología , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Glucosa/metabolismo , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/fisiología , Masculino , Transducción de Señal/fisiología , Capacitación Espermática/efectos de los fármacos , Capacitación Espermática/fisiología , Espermatozoides/efectos de los fármacos , Espermatozoides/ultraestructura
14.
Int J Cancer ; 132(10): 2237-47, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23124354

RESUMEN

Leydig cell tumors (LCTs) are the most common tumors of the gonadal stroma and represent about 3% of all testicular neoplasms. In most cases, LCTs are benign; however, if the tumor is malignant, no effective treatments are currently available. We have recently reported that farnesoid X receptor (FXR) is expressed in R2C Leydig tumor cells, and it reduces the estrogen-dependent cell proliferation by negatively regulating aromatase expression. Here, we demonstrated that treatment with GW4064, a specific FXR agonist, markedly reduced Leydig tumor growth in vivo by inhibiting proliferation and inducing apoptosis. Indeed, the tumors from GW4064-treated mice exhibited a decrease in the expression of the proliferation marker Ki-67 and aromatase along with an increase in the apoptotic nuclei. FXR activation induced an enhanced poly(ADP-ribose) polymerase cleavage, a marked DNA fragmentation and a strong increase in TUNEL-positive R2C cells also in vitro. Moreover, in both in vivo and in vitro models, FXR ligands upregulated mRNA and protein levels of p53 and of its downstream effector p21(WAF1/Cip1) . Functional experiments showed that FXR ligands upregulated p53 promoter activity and this occurred through an increased binding of FXR/nuclear factor-kB (NF-kB) complex to the NF-kB site located within p53 promoter region as revealed by electrophoretic mobility shift assay and chromatin immunoprecipitation analysis. Taken together, results from our study show, for the first time, that treatment with FXR ligands induces Leydig tumor regression in vivo, suggesting that activation of FXR may represent a promising therapeutic strategy for LCTs.


Asunto(s)
Antineoplásicos/farmacología , Isoxazoles/farmacología , Tumor de Células de Leydig/tratamiento farmacológico , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/metabolismo , Neoplasias Testiculares/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Aromatasa/efectos de los fármacos , Aromatasa/metabolismo , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo , Electroforesis en Gel de Poliacrilamida , Ensayo de Cambio de Movilidad Electroforética , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Immunoblotting , Inmunoprecipitación , Etiquetado Corte-Fin in Situ , Isoxazoles/administración & dosificación , Tumor de Células de Leydig/metabolismo , Masculino , Ratones , Ratones Desnudos , FN-kappa B/metabolismo , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Neoplasias Testiculares/metabolismo , Activación Transcripcional , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas p21 Activadas/metabolismo
15.
Cancers (Basel) ; 15(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36765778

RESUMEN

Triple-negative breast cancer (TNBC), an aggressive breast cancer subtype lacking effective targeted therapies, is considered to feature a unique cellular microenvironment with high infiltration of tumor-associated macrophages (TAM), which contribute to worsening breast cancer patient outcomes. Previous studies have shown the antitumoral actions of the dietary omega-3 docosahexaenoic acid (DHA) in both tumor epithelial and stromal components of the breast cancer microenvironment. Particularly in breast cancer cells, DHA can be converted into its conjugate with ethanolamine, DHEA, leading to a more effective anti-oncogenic activity of the parent compound in estrogen receptor-positive breast cancer cells. Here, we investigated the ability of DHEA to attenuate the malignant phenotype of MDA-MB-231 and MDA-MB-436 TNBC cell lines, which in turn influenced TAM behaviors. Our findings revealed that DHEA reduced the viability of TNBC cells in a concentration-dependent manner and compromised cell migration and invasion. Interestingly, DHEA inhibited oxygen consumption and extracellular acidification rates, reducing respiration and the glycolytic reserve in both cell lines. In a co-culture system, TNBC cells exposed to DHEA suppressed recruitment of human THP-1 cells, reduced their viability, and the expression of genes associated with TAM phenotype. Interestingly, we unraveled that the effects of DHEA in TNCB cells were mediated by reduced C-C motif chemokine ligand 5 (CCL5) expression and secretion affecting macrophage recruitment. Overall, our data, shedding new light on the antitumoral effects of DHA ethanolamine-conjugated, address this compound as a promising option in the treatment of TNBC patients.

16.
Biomolecules ; 13(7)2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37509120

RESUMEN

Obesity, defined as the abnormal or excessive expansion of white adipose tissue, has reached pandemic proportions and is recognized as an important health concern since it is a common root for several comorbidities, including malignancies. Indeed, the current knowledge of the white adipose tissue, which shifts its role from an energy storage tissue to an important endocrine and metabolic organ, has opened up new avenues for the discovery of obesity's effects on tumor biology. In this review, we will report the epidemiological studies concerning the strong impact of obesity in several types of cancer and describe the mechanisms underlying the heterotypic signals between cancer cell lines and adipocytes, with particular emphasis on inflammation, the insulin/IGF-1 axis, and adipokines. Among the adipokines, we will further describe the in vitro, in vivo, and clinical data concerning the role of leptin, recognized as one of the most important mediators of obesity-associated cancers. In fact, leptin physiologically regulates energy metabolism, appetite, and reproduction, and several studies have also described the role of leptin in affecting cancer development and progression. Finally, we will summarize the newest pharmacological strategies aimed at mitigating the protumorigenic effects of leptin, underlining their mechanisms of action.


Asunto(s)
Leptina , Neoplasias , Humanos , Leptina/metabolismo , Tejido Adiposo/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Adipoquinas/metabolismo , Neoplasias/metabolismo
17.
J Clin Med ; 12(11)2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37298039

RESUMEN

Recent evidence suggests that the male gonad is a potential target of glucagon-like peptide-1 (GLP-1). We investigated the effects of glucagon-like peptide-1 (GLP-1) on sperm function and the molecular mechanisms through which it may act. Semen samples of healthy men were incubated in the presence or absence of a GLP-1 mimetic analog, exendin-4 (Exe). In a different analysis, sperm were exposed to tumor necrosis factor (TNF-α) alone and, in some tubes, TNF-α was added after previous exposure to exendin-4 (Exe). Sperm parameters and protein-kinase B (p-Akt), insulin receptor substrate-1 (p-IRS-1 Ser312), and c Jun N-terminal protein kinase (p-JNK Thr183/Tyr185) were considered and evaluated. Sperm parameters, when incubated for 4 h in a simple defined balanced salt solution lacking protein, declined progressively with incubation time. The maximum decline was associated with a significant decrease in phosphorylated protein kinase B (p-Akt), concomitantly to an increase in insulin receptor substrate-1 (p-IRS-1 Ser312) and c Jun N-terminal protein kinase (p-JNK Thr183/Tyr185). Preincubation with exendin-4 (Exe) prevented this decline and maintained sperm motility (progressive-PM and total-TM). TNF-α exposure resulted in decreased sperm motility (PM and TM) and viability (V) in a concentration-dependent manner. Exe addition attenuated this TNF-α negative effect on sperm parameters. Glucagon-like peptide-1 (GLP-1) also acts by reducing levels of the "negative" kinases p-IRS-1Ser312 and p-JNK. An imbalance involving these three kinases in sperm, as it occurs in somatic cells, is a novel scenario that may participate in sperm physiopathology.

18.
J Biol Chem ; 285(8): 5581-93, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20026603

RESUMEN

The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that regulates bile acid homeostasis. It is expressed in the liver and the gastrointestinal tract, but also in several non-enterohepatic tissues including testis. Recently, FXR was identified as a negative modulator of the androgen-estrogen-converting aromatase enzyme in human breast cancer cells. In the present study we detected the expression of FXR in Leydig normal and tumor cell lines and in rat testes tissue. We found, in rat Leydig tumor cells, R2C, that FXR activation by the primary bile acid chenodeoxycholic acid (CDCA) or a synthetic agonist GW4064, through a SHP-independent mechanism, down-regulates aromatase expression in terms of mRNA, protein levels, and its enzymatic activity. Transient transfection experiments, using vector containing rat aromatase promoter PII, evidenced that CDCA reduces basal aromatase promoter activity. Mutagenesis studies, electrophoretic mobility shift, and chromatin immunoprecipitation analysis reveal that FXR is able to compete with steroidogenic factor 1 in binding to a common sequence present in the aromatase promoter region interfering negatively with its activity. Finally, the FXR-mediated anti-proliferative effects exerted by CDCA on tumor Leydig cells are at least in part due to an inhibition of estrogen-dependent cell growth. In conclusion our findings identify for the first time the activators of FXR as negative modulators of the aromatase enzyme in Leydig tumor cell lines.


Asunto(s)
Aromatasa/biosíntesis , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Tumor de Células de Leydig/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Elementos de Respuesta , Factor Esteroidogénico 1/metabolismo , Animales , Aromatasa/genética , Catárticos/farmacología , Ácido Quenodesoxicólico/farmacología , Células HeLa , Células Hep G2 , Humanos , Isoxazoles/farmacología , Tumor de Células de Leydig/genética , Tumor de Células de Leydig/patología , Células Intersticiales del Testículo/metabolismo , Células Intersticiales del Testículo/patología , Masculino , Ratones , Proteínas de Neoplasias/genética , Ratas , Ratas Endogámicas F344 , Receptores Citoplasmáticos y Nucleares/genética , Factor Esteroidogénico 1/genética
19.
J Cell Physiol ; 226(12): 3403-12, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21344398

RESUMEN

The mechanisms by which varicocele affects fertility remain undetermined. Estrogens play a key role in the human male reproduction and human sperm expresses the estrogen receptors (ERs) and aromatase. In this study, by Western blotting we evidenced the ERs content concomitantly in healthy sperm and in oligoastenoteratozoospermic (OAT) samples without and with varicocele. In varicocele a strong reduction of the ERß was observed, while the ERα was almost absent. Besides, transmission electron microscopy (TEM) confirmed the reduction of ERs expression in "varicocele" sperm, indicating that varicocele has a detrimental effect on sperm structure at molecular level. To further define the estrogen significance in male gamete and the pathophysiology of varicocele we investigated both the expression of ERα and ERß in normal and pathologic sperm samples as well as we evaluated estradiol (E2) action on lipid and glucose sperm metabolism. Responses to E2 treatments on cholesterol efflux, protein tyrosine phosphorylations, motility, and acrosin activity in varicocele sperm were reduced or absent. The evaluation of the triglycerides content, lipase and acyl-CoA dehydrogenase activities, suggest that E2 exerts a lipolytic effect on human sperm metabolism. Concerning glucose metabolism, it appears that E2 induces G6PDH activity concomitantly to the insulin secretion. In "varicocele" sperm, the E2 did not induce energy expenditure. OAT sperm had E2-responsiveness but in a lesser extent with respect healthy sperm. This study discovered a novel role for E2/ERs in human sperm physiology, since they modulate sperm metabolism and new detrimental effects related to the pathophysiology of the varicocele condition.


Asunto(s)
Metabolismo Energético , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Infertilidad Masculina/etiología , Espermatozoides/metabolismo , Varicocele/complicaciones , Acrosina/metabolismo , Acil-CoA Deshidrogenasa/metabolismo , Western Blotting , Estudios de Casos y Controles , Colesterol/metabolismo , Estradiol/metabolismo , Glucosa/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Humanos , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Infertilidad Masculina/fisiopatología , Insulina/metabolismo , Italia , Lipasa/metabolismo , Masculino , Microscopía Electrónica de Transmisión , Fosforilación , Capacitación Espermática , Motilidad Espermática , Espermatozoides/ultraestructura , Triglicéridos/metabolismo , Varicocele/metabolismo , Varicocele/patología , Varicocele/fisiopatología
20.
Cancers (Basel) ; 13(5)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800302

RESUMEN

Breast cancer is the most common solid malignancy diagnosed in females worldwide, and approximately 70% of these tumors express estrogen receptor α (ERα), the main biomarker of endocrine therapy. Unfortunately, despite the use of long-term anti-hormone adjuvant treatment, which has significantly reduced patient mortality, resistance to the endocrine treatments often develops, leading to disease recurrence and limiting clinical benefits. Emerging evidence indicates that extracellular vesicles (EVs), nanosized particles that are released by all cell types and responsible for local and systemic intercellular communications, might represent a newly identified mechanism underlying endocrine resistance. Unraveling the role of EVs, released by transformed cells during the tumor evolution under endocrine therapy, is still an open question in the cancer research area and the molecular mechanisms involved should be better defined to discover alternative therapeutic approaches to overcome resistance. In this review, we will provide an overview of recent findings on the involvement of EVs in sustaining hormonal resistance in breast cancer and discuss opportunities for their potential use as biomarkers to monitor the therapeutic response and disease progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA