Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Brain ; 138(Pt 4): 974-91, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25678563

RESUMEN

Peptidylprolyl isomerase A (PPIA), also known as cyclophilin A, is a multifunctional protein with peptidyl-prolyl cis-trans isomerase activity. PPIA is also a translational biomarker for amyotrophic lateral sclerosis, and is enriched in aggregates isolated from amyotrophic lateral sclerosis and frontotemporal lobar degeneration patients. Its normal function in the central nervous system is unknown. Here we show that PPIA is a functional interacting partner of TARDBP (also known as TDP-43). PPIA regulates expression of known TARDBP RNA targets and is necessary for the assembly of TARDBP in heterogeneous nuclear ribonucleoprotein complexes. Our data suggest that perturbation of PPIA/TARDBP interaction causes 'TDP-43' pathology. Consistent with this model, we show that the PPIA/TARDBP interaction is impaired in several pathological conditions. Moreover, PPIA depletion induces TARDBP aggregation, downregulates HDAC6, ATG7 and VCP, and accelerates disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Targeting the PPIA/TARDBP interaction may represent a novel therapeutic avenue for conditions involving TARDBP/TDP-43 pathology, such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/química , Femenino , Células HEK293 , Ribonucleoproteínas Nucleares Heterogéneas/química , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos , Persona de Mediana Edad , Isomerasa de Peptidilprolil/genética
2.
Nanotechnology ; 25(4): 045102, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24398665

RESUMEN

Studies of cellular internalization of nanoparticles (NPs) play a paramount role for the design of efficient drug delivery systems, but so far they lack a robust experimental technique able to quantify the NP uptake in terms of number of NPs internalized in each cell. In this work we propose a novel method which provides a quantitative evaluation of fluorescent NP uptake by combining flow cytometry and plate fluorimetry with measurements of number of cells. Single cell fluorescence signals measured by flow cytometry were associated with the number of internalized NPs, exploiting the observed linearity between average flow cytometric fluorescence and overall plate fluorimeter measures, and previous calibration of the microplate reader with serial dilutions of NPs. This precise calibration has been made possible by using biocompatible fluorescent NPs in the range of 20-300 nm with a narrow particle size distribution, functionalized with a covalently bonded dye, Rhodamine B, and synthesized via emulsion free-radical polymerization. We report the absolute number of NPs internalized in mouse mammary tumor cells (4T1) as a function of time for different NP dimensions and surface charges and at several exposure concentrations. The obtained results indicate that 4T1 cells incorporated 10(3)-10(4) polymer NPs in a short time, reaching an intracellular concentration 15 times higher than the external one.


Asunto(s)
Colorantes Fluorescentes/química , Nanopartículas/química , Espectrometría de Fluorescencia , Animales , Materiales Biocompatibles/química , Línea Celular Tumoral , Portadores de Fármacos/química , Femenino , Citometría de Flujo/instrumentación , Citometría de Flujo/métodos , Radicales Libres , Cinética , Neoplasias Mamarias Animales/patología , Ratones , Microscopía Confocal , Tamaño de la Partícula , Polímeros/química , Rodaminas/química
3.
Sci Transl Med ; 14(628): eabg3072, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35044789

RESUMEN

Immunotherapy with chimeric antigen receptor (CAR)­engineered T cells showed exceptional successes in patients with refractory B cell malignancies. However, first-in-human studies in solid tumors revealed unique hurdles contributing to poor demonstration of efficacy. Understanding the determinants of tumor recognition by CAR T cells should translate into the design of strategies that can overcome resistance. Here, we show that multiple carcinomas express extracellular N-glycans, whose abundance negatively correlates with CAR T cell killing. By knocking out mannoside acetyl-glucosaminyltransferase 5 (MGAT5) in pancreatic adenocarcinoma (PAC), we showed that N-glycans protect tumors from CAR T cell killing by interfering with proper immunological synapse formation and reducing transcriptional activation, cytokine production, and cytotoxicity. To overcome this barrier, we exploited the high metabolic demand of tumors to safely inhibit N-glycans synthesis with the glucose/mannose analog 2-deoxy-d-glucose (2DG). Treatment with 2DG disrupts the N-glycan cover on tumor cells and results in enhanced CAR T cell activity in different xenograft mouse models of PAC. Moreover, 2DG treatment interferes with the PD-1­PD-L1 axis and results in a reduced exhaustion profile of tumor-infiltrating CAR T cells in vivo. The combined 2DG and CAR T cell therapy was successful against multiple carcinomas besides PAC, including those arising from the lung, ovary, and bladder, and with different clinically relevant CAR specificities, such as CD44v6 and CEA. Overall, our results indicate that tumor N-glycosylation regulates the quality and magnitude of CAR T cell responses, paving the way for the rational design of improved therapies against solid malignancies.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Receptores Quiméricos de Antígenos , Adenocarcinoma/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Inmunoterapia Adoptiva/métodos , Ratones , Neoplasias Pancreáticas/metabolismo , Polisacáridos/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Front Mol Neurosci ; 10: 99, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28428745

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive upper and lower motor neuron degeneration. One of the peculiar clinical characteristics of ALS is the wide distribution in age of onset, which is probably caused by different combinations of intrinsic and exogenous factors. We investigated whether these modifying factors are converging into common pathogenic pathways leading either to an early or a late disease onset. This would imply the identification of phenotypic biomarkers, that can distinguish the two populations of ALS patients, and of relevant pathways to consider in a therapeutic intervention. Toward this aim a differential proteomic analysis was performed in peripheral blood mononuclear cells (PBMC) from a group of 16 ALS patients with an age of onset ≤55 years and a group of 16 ALS patients with an age of onset ≥75 years, and matched healthy controls. We identified 43 differentially expressed proteins in the two groups of patients. Gene ontology analysis revealed that there was a significant enrichment in annotations associated with protein folding and response to stress. We next validated a selected number of proteins belonging to this functional group in 85 patients and 83 age- and sex-matched healthy controls using immunoassays. The results of the validation study confirmed that there was a decreased level of peptidyl-prolyl cis-trans isomerase A (also known as cyclophilin A), heat shock protein HSP 90-alpha, 78 kDa glucose-regulated protein (also known as BiP) and protein deglycase DJ-1 in PBMC of ALS patients with an early onset. Similar results were obtained in PBMC and spinal cord from two SOD1G93A mouse models with an early and late disease onset. This study suggests that a different ability to upregulate proteins involved in proteostasis, such as foldase and chaperone proteins, may be at the basis of a different susceptibility to ALS, putting forward the development of therapeutic approaches aiming at boosting the protein quality control system.

5.
J Proteomics ; 96: 314-27, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24291354

RESUMEN

Transglutaminase 2 (TG2) is a multifunctional protein with Ca(2+)-dependent transamidating and G protein activity. Previously we reported that the role of TG2 in insulin secretion may involve cytoplasmic actin remodeling and a regulative action on other proteins during granule movement. The aim of this study was to gain a better insight into the role of TG2 transamidating activity in mitochondria and in the nucleus of INS-1E rat insulinoma cell line (INS-1E) during insulin secretion. To this end we labeled INS-1E with an artificial donor (biotinylated peptide), in basal condition and after stimulus with glucose for 2, 5, and 8min. Biotinylated proteins of the nuclear/mitochondrial-enriched fraction were analyzed using two-dimensional electrophoresis and mass spectrometry. Many mitochondrial proteins involved in Ca(2+) homeostasis (e.g. voltage-dependent anion-selective channel protein, prohibitin and different ATP synthase subunits) and many nuclear proteins involved in gene regulation (e.g. histone H3, barrier to autointegration factor and various heterogeneous nuclear ribonucleoprotein) were identified among a number of transamidating substrates of TG2 in INS-1E. The combined results provide evidence that a temporal link exists between glucose-stimulation, first phase insulin secretion and the action of TG on histone H3 both in INS-1E and human pancreatic islets. BIOLOGICAL SIGNIFICANCE: Research into the role of transglutaminase 2 during insulin secretion in INS-1E rat insulinoma cellular model is depicting a complex role for this enzyme. Transglutaminase 2 acts in the different INS-1E compartments in the same way: catalyzing a post-translational modification event of its substrates. In this work we identify some mitochondrial and nuclear substrates of INS-1E during first phase insulin secretion. The finding that TG2 interacts with nuclear proteins that include BAF and histone H3 immediately after (2-5min) glucose stimulus of INS-1E suggests that TG2 may be involved not only in insulin secretion, as suggested by our previous studies in cytoplasmic INS-1E fraction, but also in the regulation of glucose-induced gene transcription.


Asunto(s)
Núcleo Celular/enzimología , Células Secretoras de Insulina/enzimología , Transglutaminasas/metabolismo , Animales , Calcio/metabolismo , Línea Celular Tumoral , Proteínas de Unión al GTP , Glucosa/farmacología , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Proteína Glutamina Gamma Glutamiltransferasa 2 , Ratas , Edulcorantes/farmacología , Transcripción Genética/efectos de los fármacos , Transcripción Genética/fisiología , Transglutaminasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA