Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phytopathology ; 114(6): 1411-1420, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38264989

RESUMEN

Ceratocystis fimbriata is a destructive fungal pathogen of sweetpotato (Ipomoea batatas) that leads to losses at all stages of sweetpotato production. Accurate detection of C. fimbriata would allow for more efficient deployment of management tactics in sweetpotato production. To develop a diagnostic assay, a hybrid genome assembly of C. fimbriata isolate AS236 was generated. The resulting 31.7-MB assembly was near-chromosome level, with 18 contigs, 6,481 predicted genes, and a BUSCO completion score of 98.4% when compared with the fungus-specific lineage database. Additional Illumina DNA reads from C. manginecans, C. platani, and a second C. fimbriata isolate (C1421) were then mapped to the assembled genome using BOWTIE2 and counted using HTSeq, which identified 148 genes present only within C. fimbriata as molecular diagnostic candidates; 6 single-copy and 35 highly multi-copy (>40 BLAST hits), as determined through a self-BLAST-P alignment. Primers for PCR were designed in the 200-bp flanking region of the first exon for each candidate, and the candidates were validated against a diverse DNA panel containing Ceratocystis species, sweetpotato pathogens, and plants. After validation, two diagnostic candidates amplified only C. fimbriata DNA and were considered to be highly specific to the species. These genetic markers will serve as valuable diagnostic tools with multiple applications including the detection of C. fimbriata in seed, soil, and wash water in sweetpotato production.


Asunto(s)
Ascomicetos , Genoma Fúngico , Ipomoea batatas , Enfermedades de las Plantas , Ipomoea batatas/microbiología , Enfermedades de las Plantas/microbiología , Ascomicetos/genética , Ascomicetos/aislamiento & purificación , Genoma Fúngico/genética , Análisis de Secuencia de ADN , ADN de Hongos/genética
2.
Phytopathology ; 111(9): 1660-1669, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33534610

RESUMEN

Black rot of sweetpotato, caused by Ceratocystis fimbriata, is an important reemerging disease threatening sweetpotato production in the United States. This study assessed disease susceptibility of the storage root surface, storage root cambium, and slips (vine cuttings) of 48 sweetpotato cultivars, advanced breeding lines, and wild relative accessions. We also characterized the effect of storage root development on susceptibility to C. fimbriata. None of the cultivars examined at the storage root level were resistant, with most cultivars exhibiting similar levels of susceptibility. In storage roots, Jewel and Covington were the least susceptible and significantly different from White Bonita, the most susceptible cultivar. In the slip, significant differences in disease incidence were observed for above- and below-ground plant structures among cultivars, advanced breeding lines, and wild relative accessions. Burgundy and Ipomoea littoralis displayed less below-ground disease incidence compared with NASPOT 8, Sunnyside, and LSU-417, the most susceptible cultivars. Correlation of black rot susceptibility between storage roots and slips was not significant, suggesting that slip assays are not useful to predict resistance in storage roots. Immature, early-developing storage roots were comparatively more susceptible than older, fully developed storage roots. The high significant correlation between the storage root cross-section area and the cross-sectional lesion ratio suggests the presence of an unfavorable environment for C. fimbriata as the storage root develops. Incorporating applications of effective fungicides at transplanting and during early-storage root development when sweetpotato tissues are most susceptible to black rot infection may improve disease management efforts.


Asunto(s)
Ipomoea batatas , Ceratocystis , Estudios Transversales , Enfermedades de las Plantas
3.
Annu Rev Phytopathol ; 61: 185-208, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37257056

RESUMEN

Phytophthora capsici is a destructive oomycete pathogen of vegetable, ornamental, and tropical crops. First described by L.H. Leonian in 1922 as a pathogen of pepper in New Mexico, USA, P. capsici is now widespread in temperate and tropical countries alike. Phytophthora capsici is notorious for its capability to evade disease management strategies. High genetic diversity allows P. capsici populations to overcome fungicides and host resistance, the formation of oospores results in long-term persistence in soils, zoospore differentiation in the presence of water increases epidemic potential, and a broad host range maximizes economic losses and limits the effectiveness of crop rotation. The severity of disease caused by P. capsici and management challenges have led to numerous research efforts in the past 100 years. Here, we discuss recent findings regarding the biology, genetic diversity, disease management, fungicide resistance, host resistance, genomics, and effector biology of P. capsici.


Asunto(s)
Fungicidas Industriales , Phytophthora , Phytophthora/genética , Fungicidas Industriales/farmacología , Manejo de la Enfermedad , Biología , New Mexico , Enfermedades de las Plantas/prevención & control
4.
Sci Rep ; 8(1): 5194, 2018 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-29581516

RESUMEN

Phytophthora capsici is a devastating oomycete that affects solanaceous, cucurbitaceous, fabaceous, and other crops in the United States (US) and worldwide. The release of the P. capsici genome allows for design of robust markers for genetic studies. We identified and characterized microsatellites in the P. capsici transcriptome. A subset of 50 microsatellites were assayed in a diverse set of P. capsici isolates and evaluated for polymorphism. Polymorphic microsatellites were confirmed by fragment analysis, and 12 were used for population characterization of 50 P. capsici isolates from different states, hosts, and mating types. Analysis of genetic relationship among isolates revealed significant geographic structure by state. Our findings highlight the usefulness of these 12 microsatellites to characterize the population structure of P. capsici and potential transferability to closely-related Phytophthora spp. since markers are located in coding regions. Our markers will facilitate genetic characterization and complement phenotypic studies of P. capsici populations, which may assist in deployment of disease management strategies.


Asunto(s)
Genética de Población , Repeticiones de Microsatélite/genética , Phytophthora/genética , Transcriptoma/genética , Resistencia a la Enfermedad/genética , Genoma de Planta/genética , Oomicetos/genética , Oomicetos/patogenicidad , Phytophthora/patogenicidad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA